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Abstract. Currently employed time-domain simulation methods, which are based on 

trapezoidal rule (TR), or backward differentiation formulas (BDF), reveal to be both 

poorly accurate and inefficient when employed to simulate oscillating circuits. Only 

L-stable methods can solve stiff systems of ordinary differential equations (SODE) of 

most practical circuits and only P-stable methods can solve SODE of oscillation 

circuits. A trapezoidal rule is P-stable, but isn’t L-stable. BDFs are L-stable, but do 

not have P-stability. This paper presents a one-step multi-stage backward 

differentiation formula (TR-BDF4) of a second-order, as a generalization of the TR-

BDF composite scheme. This scheme is equivalent to singly diagonally implicit 

Runge-Kutta (SDIRK) methods of special type, and regarded as the one-step analogs 

of the multi-step methods, the backward differentiation formulas (BDFs). TR-BDF4' 

method is A(π/2)-stable, is not P-stable, but it has an interval of periodicity (0; 0.37). 

Unlike the conventional BDFs and TR-BDF the TR-BDF4 at small steps maintains 

the accuracy of the trapezoidal formula at the imaginary axis.  

It is further shown that the implicit difference schemes solvable by Gauss-Seidel 

iterations have some similar properties. 

Keywords: oscillating circuits, nonlinear differential equations, error analysis. 

1. Introduction 

High-performance circuit simulation has to deal with a lot of challenges for 

which at this moment several pragmatic ‘engineering’ approaches are used and where 

a sound mathematical background is lacking. In fact, simulation has to become orders 

faster and has to deal with circuits that are orders larger than met before [1]. The 
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design of the radio frequency (RF) section in a communication integrated circuit (IC) 

is a challenging problem. Although several computer-aided analysis tools are 

available for RFIC design, they are not effectively used, because there is a lack of 

understanding about their features and limitations. 

Currently employed time-domain simulation methods, which are based on 

trapezoidal rule (TR), or backward differentiation formulas (BDF), reveal to be both 

poorly accurate and inefficient when employed to simulate oscillating circuits. Only 

L-stable methods can solve stiff systems of ordinary differential equations (SODE) of 

most practical circuits and only P-stable methods can solve SODE of oscillation 

circuits. Most SPICE-like simulators for the circuits’ analysis in the time domain use 

methods of trapezoids and BDF. A trapezoidal rule is P-stable, but isn’t L-stable. 

BDFs are L-stable, but do not have P-stability.  

Improvements of BDF were looked for in combining BDF with the Trapezoidal 

Rule [2, 3]. TR-BDF2 method is more stiffly accurate, it’s stepsize control is more 

effective, but damping behavior along the imaginary axis is still insufficient.  

In this paper, we show that composite implicit method TR-BDF2 can be 

extended to a one-step multi-stage scheme, where each stage uses a backward 

differentiation formula, TR-BDF4 [4]. Here, the TR-BDF4 scheme is analogous to 

the standard BDF with 4-steps. 

In this paper, we present TR-BDF4 scheme and relate it to TR-BDF2. The 

stability properties of these two second-order singly diagonally implicit Runge-Kutta 

(SDIRK2) schemes are analyzed and compared with an original BDF2 and trapezoid 

rule. Comparison of properties of methods carried out separately for two test 

problems that have the eigenvalues of the Jacobi matrix are located either on the real 

or imaginary axes. 

Next, we show that the implicit scheme remains in some way a stiff-stable, but 

becomes undamped at a part of imaginary axis when it's solved by symmetric Gauss-

Seidel iterations [5, 6]. 

2. The second-order TR-BDF2 and TR schemes 

Assume f(x) is a sufficiently smooth nonlinear function of x. We consider 
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numerically integrating the following autonomous ordinary differential equation, 

)(xfdtdx  ,      (1) 

from time nt  to htt nn 1 . The extension of the work to non-autonomous ODEs is 

standard and straightforward. 

Our discussion starts with the following two schemes: 

• The trapezoidal scheme (TR),  

  11 2   nnnn ffhxx .     (2) 

• The implicit trapezoidal and BDF2 composite scheme (TR-BDF2), 

 2/12/1 )4/(   nnnn ffhxx ,     (3a) 

12/11 )3/2()3/1()3/4(   nnnn hfxxx .   (3b) 

The TR-BDF2 scheme (3) was originally derived as a composite method of the 

trapezoidal rule and the backward-differentiation-formula of second-order (BDF2) [2, 

3]. Unlike the standard BDFs, however, the composite BDFs do not need external 

startup calculation while maintaining the full accuracy of the scheme. By replacing 

the trapezoidal part in the TR-BDF2 scheme with the second-order implicit midpoint 

rule, another composite scheme can be derived with the same A- and L-stabilities as 

TR-BDF2 [7]. The leading order term of the local truncation error of a second-order 

scheme is 
3ChET  . For method (3) the proportionality constant is CTR-BDF2 = 

− 0.0404, for its parent methods the error constants are CTR = − 0.0833, and CBDF2 = 

− 0.222. 

3. TR-BDF3 and TR-BDF4 methods 

Now we present the generalization of the second-order composite scheme TR-

BDF3 that is one-step modification of 3-d order BDF scheme [6] 

 3/13/1 )6/(   nnnn ffhxx ,     (4a) 

3/2.4/13/2 )9/4()3/1()3/4(   nnnn hfxxx ,  (4b) 

13/13/21 )11/2()11/2()11/9()11/18(   nnnnn hfxxxx  .  (4d) 

In the same way, we obtain the BDF4 method 
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 4/14/1 )8/(   nnnn ffhxx ,     (5a) 

2/1.4/12/1 )6/1()3/1()3/4(   nnnn hfxxx ,   (5b) 

4/34/12/14/3 )22/3()11/2()11/9()11/18(   nnnnn hfxxxx  (5c) 

14/12/14/31 )25/3()25/3()25/16()25/36()25/48(   nnnnnn hfxxxxx . 

(5d) 

All TR-BDFs don’t need external startup calculation. Note, BDF3 and BDF4 

are not A-stable, however TR-BDF3,4 remains A-stable as the TR-BDF2. The 

proportionality factors of the leading order term of the local truncation error of 

TR-BDF3 and TR-BDF4 are CTR-BDF3 = −0.0177, and CTR-BDF4 = −0.00765. The main 

difference of TR-BDF4 is the fact that it does not have damping at 36.0h   along 

the imaginary axis. As a consequence, the TR-BDF4-method is more suited for 

oscillatory problems than the TR-BDF2,3-methods. All the variables in (5) are 

calculated separately, that is, TR-BDF4 is SDIRK method [8]. 

4. Seidel iterations 

The classical univariate time-step integration (SPICE-like simulation) is known 

to be inefficient on both computational time and memory storage for VLSI. The main 

disadvantage of an implicit difference schemes is the quadratic dependence of the 

CPU time on the SODE dimension m for Newton iterations. The ’time advance’ 

algorithm, using symmetric Seidel's iterations, allows this dependence to be linear 

[5]. The regions of absolute stability of implicit methods, when the symmetric Seidel 

iterations are implemented, usually partially coincide with the imaginary axis [6], so 

that at small steps they have P-stability. 

For the implicit trapezoid method (2), symmetric Seidel iterations for m-

dimensional SODE (TS) are given by two half-steps (6a) and (6b). The basic idea 

here is to 'symmetrize' the Gauss-Seidel scheme with a method that takes two half 

steps of size h/2 each: one half step is taken in the usual 'forward' direction, the 

second half step in the backward direction. 
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  ),   ,..., ,...,(4/ 2/1,,12/1,2/1,1,2/1,   nnmnknknknknk txxxxfhxx   

  )  , ,..., ,,...,(4/ ,,1,,1 nnmnknknk txxxxfh                    k = 1, 2, …, m,  (6a) 

  ),  ,,..., ,  ..., ,(4/ 11,1,2/1,12/1,12/1,1,   nnmnknknknknk txxxxfhxx   

  )  ,,..., ..., , ..., ,(4/ 2/12/1,2/1,2/1,12/1,1  nnmnknknk txxxxfh , 

  k = m,  m – 1, …1.  (6b) 

 

As method (2) isn’t L-stable, the scheme (6) has no L-stability too. To obtain 

L-stability we’ll use two-stage fully implicit method Runge-Kutta of 2-nd order 

 ] 5.0  ),  ,( 5.0[  1111 httxfhxfhxx nnnnnn   . 

For Seidel symmetric iterations we get the set of decoupled equations (7) 

(RKS).  

 

 
 













;,,...,,,...,,)4/(

,,,...,,,...,,)2/(

2/1,,12/1,2/1,22/1,14/1,2/1,

4/1,,14/1,4/1,24/1,1,2/1,

nnmnknknnknknk

nnmnknknnknknk

txxxxxfhxx

txxxxxfhxx

      k = 1, 2, …, m,     (7a) 

 

 
 














;,,...,,,...,,)4/(

,,,...,,,...,,)2/(

11,1,2/1,12/1,22/1,12/1,1,

4/34/3,4/3,2/1,12/1,22/1,12/1,1,

nnmnknknnknknk

nnmnknknnknknk

txxxxxfhxx

txxxxxfhxx

k = m, m – 1, …, 1 . (7b) 

 

5. Numerical examples 

5.1. Example 1 

A fundamental numerical problem that severely limits the usefulness of many 

computer simulation programs is the time-constant problem associated with stiff 

differential equations. Stiffness occurs in a problem where there are two or more very 

different scales of the independent variable on which the dependent variables are 

changing. For example, consider the following set of equations [9] 

vuu 1988998  , vuv 1999999  .    (8) 
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With initial conditions u(0) = 1, v(0) = 0 the solution is 

21 //
2

 tt
eeu


 , 21 //  tt
eev


 . 

Here 11   and 001.02   are time constants. If we integrated the system (8) with 

any of the methods given above, the asymptotic slope, at h→0, of a global error 

accumulated at the end of the time interval of interest as a function of stepsize in 

logarithmic scales is equal to scheme’s order, as Fig. 1 shows.  

 

 

Fig. 1.  Global error )( nn tvv   at 1nt  of (1) – (4) methods applied with 

various stepsizes h to the test problem (5). The power law exponent for h→0 is 2. 

 

L-stable methods in logarithmic scales have linear dependence )(h  up to maxh . 

The trapezoidal scheme has no L-stability, so )(hTR  rapidly rises to maximum at 

.10 minh  

5.2. Example 2 

Unfortunately, as Fig 3 shows, the solution of (8) by the symmetric iterations 

of the Seidel shows that method (6) does not have L-stability in this case. 

The efficiency of methods (6) and (7) depends essentially on the magnitude of the 

diagonal elements of the Jacobi matrix. For large diagonal elements, the methods 
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have A(α)-stability, for zero coefficients they become conditionally stable [6]. 

Method (6) was developed specifically for n-channel MOS VLSI logic, that are non-

linear RC-circuits without feedbacks. The scheme of the simplest RC-circuit of 

second order is shown in Fig. 2. System of equations of such circuits have diagonally 

dominant Jacobi matrix. As an example of such equations, we consider the system 

of equations in which the unknowns are capacitors’ voltages  

211 10001000 CCC vvv 


;    211 2 CCC vvv 


.   (9) 

With initial conditions vC1(0) = 1, vC2(0) = 0 the solution is 

)/exp()/exp(2 211  ttvC  , )/exp()/exp( 122  ttvC  . 

Solution of (9) has the same stiffness 21 /  as (8). 

        

 

 

 

 

 

 

Fig. 2. The RC-scheme. 

The corresponding functions of )(2,2 nCnC tvv  , 1nt  for (8) and (9) are 

shown in Fig. 3.  

For comparison, the same figure shows similar results for the implicit Euler 

method (ES). The Seidel iteration scheme for the implicit Euler method has the form 

of 

  ),  , ,..., ,  ..., , ,(2/ 2/1,,12/1,2/1,22/1,1,2/1,   nnmnknknnknknk txxxxxfhxx

 k = 1, 2, …, m , (10a) 

  ),  , ,..., ,  ..., , ,(2/ 11,1,2/1,12/1,22/1,12/1,1,   nnmnknknnknknk txxxxxfhxx

 k = m,  m – 1, …, 1.  (10b) 

 

C 2 

R 2 R 1 

C 

1 vC 1 vC 2 
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Fig. 3.  Global error of methods (2), (7), and (10) applied with various stepsizes h to 

the test problems (8) and (9). The power law exponent at  h→0 for the first four 

curves is 1 and 1.2 for the last two curves. 

 

5.3. Example 3 

To investigate the stability properties of numerical methods applied to oscillatory 

systems, the scalar harmonic oscillator equation is chosen as a standard test equation 

yy  , )0(  ,     (11) 

where ω is a real constant [10]. This is the analogue of Dahlquist test equation 

yy    with  j  for a first-order ODE, although the situation is not totally 

parallel to problems with large negative eigenvalues of the Jacobian matrix. The 

solutions to (11) are given by the family of sine curves. With initial conditions 

0,1)0(  yy  the solution is )cos( ty  . 

By introducing a new variable yz  , we can rewrite (11) as first-order system 

),(),,( zygzzyfу   

with purely imaginary eigenvalues (±iω) of the Jacobian matrix.  

The asymptotic slope of a global error as a function of stepsize in logarithmic 

scales is equal to scheme’s order only for BDF2 now, as Fig. 3 shows. The effective 

order of TR-BDF2 is three at the imaginary axis, and four for TR and TR-BDF4. As a 
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consequence, the method TR-BDF4 is more suited for oscillatory problems than the 

method TR-BDF2. 

 

Fig. 4.  Global error )( nn tyy   at tn  = 2π of (1) – (7) methods applied with 

various stepsizes h to the test problem (11). The asymptotically power law exponent 

is two for BDF2,  three  –  for TR-BDF2 and TR-BDF-3, and four – for TR, TR-

BDF-4, and RKS. 

 

The variation of the slope is observed only at the points of local extrema. At 

any other time, asymptotical slope of all the curves is two as at Fig. 1.  In Fig. 2 nt  is 

equal to the period of oscillation. The effective value of the order at the imaginary 

axis is determined by the factor of numerical dumping a and frequency distortion b 

[10]. The schemes TR and TR-FDN4 have a = 0.  

6. Disscussion 

In this paper we present method of estimation the error of numerical solving of 

highly oscillation SODE for the first time. Properties of methods of numerical 

solution of highly oscillatory ordinary differential equations are describe in [10] by 

two parameters – factor of numerical damping, and relative period error. Here for the 

various methods comparison only one standard parameter is used – the effective 

order of the global error in the point of the analytical solutions (10) corresponding to 

the local maximum. Here we are using the principle entia non sunt multiplicanda sine 
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necessitate. 

Method TR-BDF4, as Fig. 5 shows, isn’t strictly A(π/2)-stable. As Fig. 4 

shows, the error is negligible within the prescribed tolerance reltol > 10
 − 9

. For 

(7)  | A(ωh)| = 1 with  ωh < 2 [6]. 

Modified L-stable trapezoid methods are known; however, they possess either 

reduced accuracy [11], or stability [12]. 

Method (7) is a viable alternative to the conventional techniques for simulating 

large scale integrated circuits since sufficient conditions for its convergence are quite 

mild and are satisfied by a large class of practical circuits [5]. We note, however, that 

the effective order of second-order methods under Seidel iterations, as Fig. 3 shows, 

decreases somewhat. 

 

 

Fig. 5. The modulus of the error function on the imaginary axe. The trapezoid method 

is strictly A(π/2)-stable only. 

 

The process of developing software from a mathematically specified method is 

complex: it involves constructing control structures, selecting iterative methods and 

termination criteria, choosing norms and many more decisions. Two different 

implementations of the same method may show significant differences in 

performance [13]. Here we investigated the properties of SODE solving methods. 
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The engineer is dealing with software codes. The features of the codes should be 

investigated separately [14]. 

7. Conclusion 

This paper presents a one-step multi-stage backward differentiation formula 

(TRBDF-4) of a second-order, as a generalization of the TR-BDF composite scheme. 

This scheme is equivalent to singly diagonally implicit Runge-Kutta (SDIRK) 

methods of special type, and regarded as the one-step analogs of the multi-step 

Gear’s methods, the so-called backward differentiation formulas. Unlike the standard 

BDFs and TR-BDF2, however, TR-BDF4 maintains the accuracy of the trapezoidal 

formula at imaginary axe. TR-BDF4 is trivial to implement in an existing TR-based 

code with virtually no added computational cost. TR-BDF4 is the best method of the 

second order for analysis of RF circuits in a time domain as it has L-stability and no 

damping along a large part of the imaginary axis. TR-BDF4 scheme can serve as a 

compromise solution to the problem of the oscillatory and simultaneously stiff 

circuit’s analysis, for example, simulation of an oscillator of the harmonic oscillations 

[15, 16]. 

Finally, we note that the method of analysis of RF circuits can be called the best 

strictly if it has no damping throughout the all imaginary axis. However, this 

requirement holds only with symmetric stability function, i.e., in the absence of L-

stability. The absence of damping along the part of imaginary axis has a number of 

methods. Among them can be noted implicit method using a scheme with 

combination of Newton and symmetrical Seidel iterations [17] and hybrid method 

developed on the basis of Rado IIA and Lobatto IIIA methods [18]. 
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