Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. No. 8
Contents

Full text in Russian (pdf)

Russian page

 

DOI https://doi.org/10.30898/1684-1719.2021.8.1

UDC 621.369.9

 

 The remote sensing of snow water equivalent using broadband electromagnetic pulses from an UAV board

 

K. V. Muzalevskiy

 Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk 660036, Russia

 

 The paper was received on July 15, 2021 

 

Abstract. In this paper the possibility of snow cover remote sensing from an unmanned aerial vehicle-quadrocopter (UAV) with using a broadband pulse of 1.05 ns duration was investigated on the agricultural field near Minino village, Krasnoyarsk Territory from November 23, 2020 to March 4, 2021. A log-periodic antenna (from 1.36 GHz to 4.89 GHz bandwidth) and a compact vector network analyzer CABAN R60 (LLC Planar, Chelyabinsk) were used to generate, emit and receive broadband pulses. It is shown that both ground-based and remote sensing from the UAV, the time delays between pulses reflected from the air-snow and snow-soil interface linearly depend on the snow water equivalent, measured at the test site. The slope of these linear dependences is determined by the average density of the snow cover. The obtained experimental results show the promising of development of remote sensing technology for radar mapping of the main characteristics of the snow cover from UAV, which can supplement the information support of existing systems used in precision farming.

Key words: radiolocation, UAV, ultra-wideband pulses, snow cover, snow water equivalent, snow density, height of snow cover, frozen soil.

References

1. Šipoš D., Gleich D. A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection. Sensors. 2020. Vol.20. No.8. P.2234.

2. Noviello C., Esposito G., Fasano G., Renga A., Soldovieri F., Catapano I. Small-UAV Radar Imaging System Performance with GPS and CDGPS Based Motion Compensation. Remote Sensing. 2020. Vol.12. No.20. P.3463.

3. García Fernández M. et al. Synthetic Aperture Radar Imaging System for Landmine Detection Using a Ground Penetrating Radar on Board an Unmanned Aerial Vehicle. IEEE Access. 2018. Vol.6. P.45100-45112.

4. Pérez Cerquera M., et al. UAV for Landmine Detection Using SDR-Based GPR Technology, Robots Operating in Hazardous Environments Hüseyin Canbolat. [online]. IntechOpen. 2017. Äàòà äîñòóïà: 15.07.2021. https://www.intechopen.com/books/robots-operating-in-hazardous-environments/uav-for-landmi ne-detection-using-sdr-based-gpr-technology

5. Kaundinya S. A UAS-based ultra-wideband radar system for soil moisture measurements. IEEE Radar Conference. Oklahoma City. 2018. P.0721-0726.

6. Wu K., Rodriguez G.A., Zajc M., Jacquemin E., Clément M., De Coster A., Lambot S. A new drone-borne GPR for soil moisture mapping. Remote Sensing of Environment. 2019. Vol.235. No.111456.

7. Arnold E., Rodriguez-Morales F., Paden J., Leuschen C., Keshmiri S., Yan S., Ewing M., Hale R., Mahmood A., Blevins A., Mishra A., Karidi T., Miller B., Sonntag J. HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms. Geosciences. 2018. No.8. P.182.

8. Jenssen R.O.R., Svein J. Drone-mounted UWB snow radar: technical improvements and field results. Journal of Electromagnetic Waves and Applications. 2020. Vol.34. No.14. P.1930-1954.

9.  Jenssen R.O.R., Jacobsen S.K. Measurement of Snow Water Equivalent Using Drone-Mounted Ultra-Wide-Band Radar. Remote Sensing. 2021. Vol.13. No.13. P.2610.

10. Eckerstorfer M., et al. UAV-borne UWB radar for snowpack surveys. [online]. Tromso Science Park, Tromso. 2018. 13 p. Äàòà äîñòóïà: 15.07.2021. https://norut.no/sites/default/files/norut_rapport_8-2018_0.pdf

11. Finkel'shtejn M.I., Karpuhin V.I., Kutev V.A., Metelkin V.N. Podpoverhnostnaya radiolokaciya [Subsurface radiolocation]. Moscow, Radio i Svyaz' Publ. 1994. 216 p. (In Russian)

12. Finkel'shtejn M.I., Kutev V.A. About sensing sea ice with a video pulse train. Radiotekhnika i elektronika [Journal of Communication Technologies and Electronics]. 1972. Vol.17. No.10. P.2107-2112. (In Russian)

13. Finkel'shtejn M.I., Mendel'son V.L., Kutev V.A. Radiolokaciya sloistyh zemnyh pokrovov [Radiolocation of layered earth covers]. Moscow, Sovetskoe Radio Publ. 1977. 176 p. (In Russian)

14. Finkel'shtejn M.I., Kutev V.A., Zolotarev V.P. Primenenie radiolokacionnogo podpoverhnostnogo zondirovaniya v inzhenernoj geologii [Application of radar subsurface sounding in engineering geology]. Moscow, Nedra Publ. 1986. 128 p. (In Russian)

15. Arcone S., Yankielun N. 1.4 GHz radar penetration and evidence of drainage structures in temperate ice: Black Rapids Glacier, Alaska, U.S.A. Journal of Glaciology. 2000. Vol.46. No.154. P.477-490.

16.  Kwok R., Kurtz N. T., Brucker L., Ivanoff A., Newman T., Farrell S. L., King J., Howell S., Webster M. A., Paden J., Leuschen C., MacGregor J. A., Richter-Menge J., Harbeck J., Tschudi M. Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge. The Cryosphere. 2017. Vol.11. P.2571-2593.

17.  Sold L. et al. Methodological approaches to infer end-of-winter snow distribution on alpine glaciers. Journal of Glaciology. 2013. Vol.59. P.1047-1059.

18.  Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska. Annals of Glaciology. 2014. Vol. 55. No.67. P. 8-88.

19.  Dronecode [online]. Qgroundcontrol. Äàòà äîñòóïà: 15.07.2021. http://qgroundcontrol.com/

20. PX4 autopilot. [online]. jMAVSim with SITL. Date of access: 15.07.2021. https://docs.px4.io/master/en/simulation/jmavsim.html

21. Muzalevskiy K.V., Fomn S.V. Ultra-wideband impulse sensing of the layered structure of the snow-soil cover. Experimental research. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2020. No.8. https://doi.org/10.30898/1684-1719.2020.8.15

22. Muzalevskiy K.V. Ultra-wideband impulse sensing of the layered structure of the snow-soil cover. Theoretical research. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2020. No.8. https://doi.org/10.30898/1684-1719.2020.8.14.

23. EBAY [online]. Ultra Wideband Log Periodic Antenna. Äàòà äîñòóïà: 15.07.2021. https://www.ebay.com.au/itm/1-35-9-5GHz-15W-Ultra-Wideband-Log-Periodic-Antenna-SMA-Connector-High-Accuracy-/183118828851

24. Harris F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE. 1978. Vol.66. No 1. P.51-83.

25. Lynch P. The Dolph-Chebyshev Window: A Simple Optimal Filter. Monthly Weather Review. 1997. Vol.125. P.655-660.

26. Lundberg A., Thunehed H., Bergström J. Impulse Radar Snow Surveys – Influence of Snow Density. Hydrology Research. 2000. Vol.31. No.1. P.1–14.

For citation:
Myzalevskiy K.V.
The remote sensing of snow water equivalent using broadband electromagnetic pulses from an UAV board. Zhurnal Radioelektroniki [Journal of Radio Electronics]. 2021. No.8. https://doi.org/10.30898/1684-1719.2021.8.1  (In Russian)