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Abstract. We apply to study coupled receiving antennas aryhef electromagnetic
wave multiple scattering by ensemble of dielectind conductive bodies, with
describing the excited currents inside bodies mns$eof electric field tensor T-
scattering operator. A system of equations for estg on surfaces of coupled
perfectly conductive receiving antennas is writteith the aid of a single antenna
surface T-scattering operator. This system islvedofor the case of coupled linear
wire receiving antennas in the form of thin vibratippoles when asymptotic method
of “big logarithm” leads to separable wire T-scattg operator of single tuned
vibrator-dipole. The separability simplifies anay¢valuating the local total currents
on two (and more) coupled receiving antennas aridagéimensionless coupling
factor. Our final aim consists in using the obtdirealytic solution to study near
field coherent effects caused by thermal microwaadiation incident electric field
distribution along single or two coupled receivwvigrator-dipole antennas placed at

a heated biological object boundary surface an@éduto half wavelength in the
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object. In the case of equilibrium thermal radiatiwwe meet a generalized Nyquist
formula for currents’ fluctuations excited on coegbl receiving vibrator-dipole
antennas, with accounting the auto-correlation arabs-correlation functions of
random electric field inside each antenna and dh batennas, respectively. In the
case of local volume change of the biological dbgetperature distribution we
reveal in the model framework of random electripote source inside object
absorption skin slab area the interference-extr@muperties for fluctuations of
currents excited along antennas depending on velgtositions of antennas and
random electric dipole source. The reveled extrpmoperties are used as base to
reconstruct the random electric dipole positionsganning the single antenna or two
coupled ones along biological object boundary serfa

Key words: receiving coupled antennas, excited currentscéttering operator, thin
vibrator antennas, biological object, temperatueal variation, thermal radiation,
interference receiving fields, scanning local randsmurce.

AHHOTALMA. Mpe1 [IPUMEHSEM TEOPUIO MHOT'OKPaTHOI'O paccesHus
OJICKTPOMArdMTHBIX BOJIH Ha ancamMoOuIe AUDJICKTPUYCCKUX W IMPOBOJANIMX TCJI IJIA
HN3Yy4YCHUA BSaHMOHeﬁCTBy}OHlHX IMPUHUMAIOIINX aHTCHH, OIIMCbhbIBAsA B036y)KI[eHHBIe
BHYTpHM QAHTCHH TOKH C IIOMOIIBKO TCH30PHOI'O T —oreparopa pacCeaHHuA
QJICKTPHUYCCKOI'O ITOJIA. Cucrema ypaBHCHI/Iﬁ A1 TOKOB Ha IIOBCPXHOCTAX
BBaHMOHeﬁCTBy}OHlHX MCTAJUIMYCCKUX TIPUHUMAIONIMX AHTCHH 3allMChIBACTCA C
IMOMOHIBIO IMOBEPXHOCTHOI'O T- oreparopa pacCCiaHus I/ISOJIPIPOB&HHOﬁ AHTCHHEI.
3anucaHHas CHUCTEMa pemaeTcs I Cclydas B3aMMOJEHUCTBYIOIIMX JIMHEHHBIX
MPOBOJIOYHBIX MPUHUMAIOLIUX AHTEHH B (POpME TOHKHMX BHOPATOpPOB — AMIOJIEH
ACUMNTOTHYECKUM METOJAOM - OoJblioro Jorapudpma “, TPUBOIAIIUM K
cenapabesbHOMY  JIMHEHHOMY T-  omepaTopy paccesHUus  H30JHMPOBAHHOTO
HAacTpOEHHOTO BHOparopa-aunossi. CenapabeabHOCTh YIPOIIACT AHATUTHYECKOE
BBIYHCJICHUC JIOKAJIbHBIX TOKOB Ha ABYX ( n 6OJ'ICC) BSaHMO,HCﬁCTBy}OIHHX AHTCHHAaX "
0e3pa3MepHOTO MapaMeTpa B3aUMOJICUCTBHUSI aHTeHH. Hama okoHYaTenbHa IIeib
COCTOUT B HCIIOJIB30BAHHMHU IIOJYYCHHOI'O aHAJIMUTHYCCKOI'O PCHICHHA K H3YYCHHUIO

OJIMKHETIOJIEBBIX KOrepeHTHBIX  3((PeKkToB, OOYCIOBICHHBIX pacCHpeaeICHUEM
2
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MAJIAIOMIETO AJIEKTPUYECKOrO MO TEIIOBOTO MUKPOBOJIHOBOIO M3JIYYEHHS! BIOJIb
W30JUPOBAHHOTO  WJIM JBYX B3aWMOJCHCTBYIOIIMX MPUHUMAIOIINX BHOPATOPOB-
JWIOJICH,  pPACHOJIOKEHHBIX  OKOJO  TIPAHUYHOM  TOBEPXHOCTH  HArperoro
OMOJOTHYECKOTO 00BEKTa W HACTPOCHHBIX HA TOJIOBUHY JJIMHBI BOJHBI B OOBEKTE.
IIpyu paBHOBECHOM TEIUIOBOM HM3Jy4EHUH MblI NPUXOAUM K 0000IIeHHONU dopmylie
HainikBucra mis (bayKTyalluii TOKOB, HAaBEJCHHBIX Ha B3aMMOJICHCTBYIOIIUX
MPUHUMAIOIINX BUOpPATOpAX-AUIONAX, C YUETOM aBTO-KOPPEISIIMOHHONW ¥ Kpocc-
KOPPEJSIITUOHHON (DYHKIIUH  CIIy4alHOTO JJICKTPUYECKOTO TOJISI Ha KaXIOM WJIU
o0oux BHOpaTOpax-IuIloisiX, COOTBETCTBEHHO. PaccMarpuBas JIOKaJIbHOE 00BEMHOE
W3MEHEHUE  paCIpeleNieHusT TeMIlepaTyphl  OHMOJIOTHYECKOTO  OOBEKTa, MBI
oOHapy»XHMBaeM B paMKax MOJEIU CIy4alHOTO AJIEKTPUYECKOTO JIUMOJBHOTO
HMCTOYHMKA BHYTPH TOTJIOMIAIONIETO CKHUH-CJIOS 00BbekTa  uHTEpEpPEHIIMOHHO-
AKCTpEeMallbHbIE CBOMCTBAa BO30YXJIAae€MbIX BJOJb MPUHUMAIOIIUX BHOPATOPOB —
JUITOIEH (IYyKTyallMOHHBIX TOKOB B 3aBUCUMOCTH OT OTHOCHTEJIHHOTO
PACIOJIOKEHUST BUOPATOPOB-IUIIOICH M CIY9alHOTO SJEKTPUYECKOTO JUMOIBLHOTO
UCTOYHUKA TeIuloBoro wusiydeHus. OOHapy>KEeHHbIE SKCTpeMajbHbIE CBOMCTBA
WCHOJIB3YIOTCS KaK OCHOBa JJIi BOCCTAHOBIICHUS PACIIOJIOKEHUS CIy4auHOIO
AJIEKTPUYECKOTO JAUMOJIBHOIO UCTOYHUKA MYTEM CKAHUPOBAHUS U30JMPOBAHHBIM HIIH
JBYMS B3aUMOJICUCTBYIOIIMMHM  TPUHUMAIOIIUMH BUOPATOPAMH-IUIIONSAMH BIOJb
TPAaHUYHOMN TTOBEPXHOCTH OMOJIOTHIECKOTO OOBEKTA.

KiarwudeBble cji0Ba: MpUHUMAIOIIKNE B3aUMOJICHCTBYIOIME aHTEHHBI, BO30YK/ICHHbBIC
TOKH, |- Omeparop paccesHus, TOHKas BHOpaTOpHas aHTEHHA, OWOJIOTUYECKUMN
00BEKT, JIOKaJbHAS BapHaIys TEMIIEPaTyphl, TETUIOBOE M3ITydYeHHE, HHTEPpPEepEeHIIHS

IMPUHUMACMBIX HOHCﬁ, CKaHUPOBAHUEC JIOKAJIBbHOT'O CquaﬁHOFO HNCTOYHHKA.

Introduction

Measuring method of the temperature spatial distion inside of a biological
tissue object by recording its own thermal radmatio the microwave range is well
known at the present time [1]. During the last ttyeyears, there has been realized

that a contact antenna [2-4] or system of contatgramas [5] are situated in the area
3
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of a heated object thermal near fields, which hHaasically the form of evanescent
electromagnetic waves exponentially decaying inp@edicular to the object
boundary surface direction accordingly with Rytoptgdiction [6].

Note, mean sizd) of a contact antenna aperture is rationally tathasen in
accordance with [2-5] as being much smaller thahatsn wavelengthd in free

space and of the order of the radiation wavelenjtinside a biological object, i.e.,
A, £ D << A. Such inequalities suppose the real @arof biological tissue complex

dielectric permittivitye = &' +i&" in microwave range to be substantially greater the

dielectric permittivity &, of free space that is really the case for sonmudéis. For

example, the dielectric permittivity of human hdadin may be taken at frequency
f = 780 MHz to bes =30+i8.5 [5] that givesA = 39 cm, A, = 7 cm and

absorption skin deptidg = 1/2k{ = 4 cm wherek; = ko./¢ = k; +ik{ is the
complex wave number inside brain medium, with = 272/ and k; = 272/ ;.

Under above inequalities putting on mean size aperthe contact antenna receives
strong decaying evanescent waves of thermal radiain free space, which
correspond to weak decaying evanescent waves ihgt®gical object.

The wave theory [6,7,8] of an absorbing body thérmkectromagnetic
radiation having been published , Levin and Ryt8y dnd Rytovet al [10] have
considered some problems on current excitation @taliic antennas by thermal
radiation fields, including the case of thin matatintennas (linear wire antennas). To
considered problems are related: (i) antenna dmitain equilibrium thermal
radiation field; (ii) current excitation in antenr®y thermal radiation of distant
bodies; (iii) current excitation in coupled antesnawith phenomenological
accounting of coupling effect by antenna mutualedgmnce.

The aim of our presented work is to consider theeri excitation in coupled
receiving antennas by incident electromagnetidfi@lith evaluating the coupling
effect via analytic solution to system of equatidios currents’ distribution on

coupled linear wire tuned antennas. Especially w&end to study the current
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excitation in such antennas by thermal radiatiorsrofll body placed in near field
zone of antennas, as well as by equilibrium therradiation. Actually our work
consists in the following.

Because electromagnetic mutual interaction (cogpline antennas is included
in theory of wave multiple scattering by ensembfebodies [11], we write the
volume current density inside a body in terms @& body electric field tensor T-
scattering operator [12-17] and then derive theegansystem of equations for
volume current densities inside all bodies of erdenones with the aid of Watson
composition rule [12, 15] for scattering operatd@sspecific property of the derived
system of equations for currents’ densities insiddies consists in that the system is
written in terms of single body T-scattering operatn particular case of antennas
placed at a heated biological object boundary sartae derived general system of
equations for volume currents’ densities insidesanas takes into account also the
coupling effects between antennas and object boynsiaface (inhomogeneous
object) that we do neglect in our concrete catouia. What is more, bearing in

mind that mean sizdd of contact antennas conforms to wavelengdthinside a

biological object, we think them as were placedhe object boundary subsurface,
with thickness being not more or order the absonpsikin depthdy . On the way of

such simplifications the mentioned general systéraquations is transformed to a
reduced system of equations for surface currergasities on surfaces of coupled
perfectly conducting receiving antennas writtenhwibhe aid of a single antenna
surface T-scattering operator. The reduced systgpases all coupled antennas to
be placed in an effective unbounded medium, withenaumber being equal to wave

number k; inside the biological object under study. The neut step consists in

passing to linear wire antennas, with mean diagatgizea of each wire being very

small compared to wire length and wavelengthd,, a<< D; a<</,. Passing to

linear wire replaces the above single antenna ceirfascattering operator to single

wire T-scattering operator that is one-dimensideehel, which expresses the total

current in a cross section of the wire through texcelectric field component along
5
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wire. According to Levin and Rytov [9], the singkdre T-scattering operator of
tuned linear wire antennaD =nA; /2 (n is integer number), takes a simple
separable form in asymptotic limit of “big logamti when parameter
n =1/(2Ink;a) has a small value. Theory of this asymptotic limdts elaborated by

Leontovich and Levin [18] after Hallen paper [199r fanalytic solution to
Pocklington integral equation [20] that descrildes ¢urrent distribution along linear
wire antenna depending on excited electric fielchgonent along the wire. We use
the separable form of the single wire scatteringrafr to resolve the system of
equations for currents’ distributions along two gled tuned linear wire antennas in
terms of excited electric field components alonthbweires and their coupling factor,
which is defined as ratio of antenna mutual impedatio self-impedance of a single
antenna and evaluated directly. The mutual impeslaictwo wire antennas was
studied earlier [21, 22] for transmitting antennath the aid of more complicated
method; convenient formulas for mutual impedancandénnas placed on big distant
between them are considered in paper [23]. Thar@ataurrents’ distributions along
coupled tuned linear wire antennas are appliechéocase when exciting electric
field is caused by thermal radiation of a biologjiobject, with temperature being

equal to sum of homogeneous compon@gtand temperature local volume spatial
variationd ©(r) . The homogeneous component of the object temper@&ly creates

an equilibrium thermal radiation that is charaaed by standard form [10] of
electric field spatial correlation function as ¢texr field tensor Green function
imaginary part, with a scalar factor being in fraftit. A local volume variation of

the object temperatur@ ©(r) gives rise to the thermal radiation from correspog
local random electric current density variatiﬂhj'src(r) (dipole) delta-correlated
with respect to spatial position and polarizationgntation). Such electric current

JTS'C(r) can be thought as sum of three mutually perpetati@and statistically

independent random currents (dipoles). On this waycome to a model of random
electric dipole source inside a biological objeoewted parallel to coupled tuned

6
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linear wire antennas. We suppose the random dipobe placed in near wave zone
of both antennas and evaluate the antennas’ araitaia this dipole with the aid of

method elaborated by Brilliouin [24], Pistolkors5]2 and Bechmann [26] to study
electromagnetic field in near zone of linear wirdeana (see also [27]). This model
of random electric dipole source reveals the ieterice — extreme properties for
fluctuations of excited in antennas currents depgndn relative positions of

antennas and the random dipole source. The reveaatedierence — extreme

properties are analyzed from viewpoint to recormstrine random dipole source
position via special arrangement of two antennasbimhogical object boundary

surface or via special scanning the single antaforgy this boundary surface.

The organization of the paper is as follows. In.3dbe general equations’
system for volume currents’ densities inside codipkeceiving antennas near
biological object boundary surface is written imte of a single antenna electric field
tensor T —scattering operator. In Sec.3 the dergatkral system is transformed to
reduced system of equations for surface currentpesfectly conducting antenna’s
surfaces written in terms of a single antenna sarfia scattering operator. In Sec. 4 a
passing to system equations for currents along ledupnear wire antennas is
described and these equations’ system is writtéarms of a single wire T-scattering
operator. In Sec. 5 the equations’ system for cisralong two coupled turned linear
wire antennas is resolved in asymptotic limit &f #o-called “big logarithm”. In Sec.
6 the obtained currents’ distributions along codplened linear wire antennas is
applied to the problem of antennas’ exciting Hyi@ogical object thermal radiation
via the object temperature homogeneous componanSec. 7 a local volume
variation of the object temperature is modeled byrasponding random electric
dipole source and the interference- extreme pregsefor fluctuations of excited in
antennas’ currents depending of relative positmingntennas and the random dipole

source are considered. Conclusions are made ir8Sec.
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Coupled receiving antennas at biological object bowdary
We start with the Helmholtz vector wave equationdtectric field E(r) of a
monochromatic electromagnetic wave of frequencyn a three -dimensionaBD)

iInhomogeneous isotropic dielectric and conducttngcsure writing the equation as

o nwsrc

0507 =0,0, + 2 £ =V O | Ep(r) = 7J5°(T) (1)

Our structure consists of homogeneous biologic@abboccupying (Fig. 1) the left

half spacey > 0 of the Cartesian coordinate systeay,z and receiving antennas
placed at the object boundary surfage 0. Symbol &,(r) denotes the complex
dielectric permittivity of the structure without tennas (bounded biological object)
equal to dielectric permittivityg, = 1 in free spacey <0 ande = &' +i (4o / @)

inside biological objecty > 0, with & and o being real part of the complex

dielectric permittivity and specific conductivityf dhe object, respectively. An

effective “scattering potentiaN/ (r) of antennas is defined by

o
V(r)= _CZZ (Ea—&)X(r—ry) = qu (r) (2)
g g
whereé, =& +i (4ro 51 @) is the complex dielectric permittivity of antenna,
By = cqns; : i

absorption 4 3
i skan depth

dy

Ly
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Figure 1. Schematic showing of biological objectrefg area; dotted line
symbolically visualizes an absorption skin depith) thermal radiation receiving

on two coupled antennas whose length, diametethandistance along the x-axis

direction are denoted a® =2h, 2a, and b respectively; a<<D. The
designations©,, o0O(r), and JTsrC(r) stand for homogeneous and random
local volume variations of the object temperat@€), and local electric current

density variation related to the local temperauaeation 0 ©(r) , respectively.

with &£, and g, being its real dielectric permittivity and specifconductivity,
respectively. The functiony(r —r,) is the characteristic function of thg-th

antenna, equal to unity if poimt belongs to the region occupied by theth antenna
and equal to zero otherwise. The antennas are asistonioe identical and centered at

positions r,, q=123,.... Each antenna is characterized by a single stajter

potential V,, (r), defined via Eq.(2). The magnetic permittivity sepposed to be

1 =1 everywhere. The vectof °°(r) denotes the electromagnetic field source
volume current density, which can be random ashe) dase of biological object
thermal radiation. The summation over repeated Kzsedscripts is implied in the
limits from 1 to 3, with 1, 2, 3 corresponding teetx,y,z axes. The Gaussian
system of units is used amddenotes the light speed in the free space.
We are interested in the electric currents exciteside antennas. Let us
introduce a vector
I (r) =V, (r) E(r)
EL:Z’J[UA+:;(€A—EO)})((F—FQ)E(F)E?T(q)(r) )
that presents accurate with the facfar./ic? a sumj(? (r) of volume conducting

and displacement current densities inside ¢h¢h antenna. A complete current
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density J(r) => J@(r) excited in all antennas can be evaluated, provitied
q

electric field tensofT -scattering operatoTaﬁ(r,r') [16,17] of antennas’ system is

known . Really, denot@oag(r,r') the electric field retarded Green tensor function
of the bounded biological object, which satisfiée tHelmholtz Eq.(1) without
antenna scattering potential in the left-hand fiddS) and with the delta-source
term J,,0(r —r’) in the right-hand side (RHS) of the equation amel tadiation

conditions in the infinity. The electric field Gre¢ensor functiorG® enables one to
bring [15-17] a solution problem for the Helmhadtg.(1) to wave integral equation

E,(r) = E%(r) + [ dr'Gas(r,r') V(r') E4(r) (4)
Here E°(r) denotes the incident on antennas electric fiatdmyby
i ¢, N :
E°a(r):iczjdr Gos(r,r)jze(r’ (5)

Solution to the wave integral Eq.(4) is presentest17] in terms of the electric field

tensorT -scattering operator of antennas’ system by anlgytizat has a form
E,(r) = Eg(r) +[dr' [dr"Gas (r,r) T, (r',r") E)(r") (6)

Comparison of this equality with integral Eq.(4veg the Lippmann- Schwinger

equation for the electric field - scattering operator of antennas’ system
Top(r,r) =V(r) 8,0(r =r') +V(r)[dr'Gy, (r,r")T 4(r", 1) (7)
and a symbolic operator relatigreVE =T E°, which in details is written as
— ' [} 0 I
3o (r) = dr' T op(r,r) Ex(r) (8)
The obtained relation shows that one can indeeduaeathe complete current
density excited in all antennas, having known tleetac field tensorT - scattering
operator of antennas’ system and the incident tenaas electric field.
The wave integral Eq. (4) can be derived with tioecd vector Green theorem

and the boundary conditions on antennas surfaaestanfinity, with similar to [16]

manipulating for the case of bodies’ system in Bpace.
10
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Side by side with the electric field -scattering operator of antenna’s system it

is convenient to consider also the electric fi€lescattering operator of a singtp-th

antennaTq, that satisfies the Lippmann-Schwinger equatiorthwihe single

scattering potential, T, =V, +VqGOTq. According to Watson composition rule

[12,15] connection betweem - scattering operator of antenna’s system and esingl

scattering operator, of antennas is given by a system of operator émnst
— (a). (a) — 0 (a)
T=>TY, T =Ty +T,G DT (9)
q q'#q
Here T® has sense of - scattering operator af -th antenna coupled with all other
antennas. Convolving Eq.(9) with the incident elecfield E° gives for current

densitiesd @ =T@E? inside antennas (3) a basic system of equations

I() = g () + [dr [ dr' T, (r, 7GR (', r") 33 (r") (10)
q'#q

written in terms of current densities inside ofghnantennas), =T, E° and the
single scattering operatois, of antennas.

The basis system of Eqgs .(10) for currents’ dessitnside antennas is too
complicated, having accounting the coupling effieat only between antennas but
also between antennas and bounded biological obiretiie next section the system

(10) is simplified via accounting the coupling efdetween antennas only.

Coupled receiving perfectly conducting antennas inde the object
boundary subsurface
Remind that in practice [2-5] the mean size of aohantennas conforms to

wavelength A, inside a biological object. We use that conformiity avoid the

problem of coupling between antennas and biologibgct boundary, with replacing

in all equations of the preceding section the dledteld Green tensor function

G%;(r,r'") of the bounded biological object to the Green genfunction

11
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Goaﬁ (r —r'") of unbounded biological object. Simultaneously aeeds replacing in
Egs. (2) and (3) the permittivity, to & .

We consciously use such rather rough approach d¢asfmur attention on
coupling effects between antennas at receivindgpitlegical thermal radiation.

The above electric field Green tensor function wibaunded biological object

IS given by

Gop(r-r)= (a',6’+|:| DB/k)G (r- r)-ZLaﬁ(r)G(r ry (11)

where Gy(r) =exp(k;r)/(-4nr) denotes a scalar Green function. The basic

Egs.(10) for currents densitigs? (r,) inside two coupled antennag=1,2 takes a

form
A 19() =[d Tup(rn)
(12)
[E,B (rl )+[d I"2 Lﬁy(rl )Go(rl r2 )J y (r, )]
and
477&, j2(r) = Id rz To(12, rz )
(13)

B35+ [dr Ly 660 -]
where indices 1 and 2 are related to antennas 12aff€ig.1), respectively, and
integrations are performed inside volumes of tleagennas.

The next problem consists in evaluating the siisgkgtering operator$;, and
T, of antennas 1 and 2. Instead of direct solutiorthi® Lippmann- Schwinger

equation for a single scattering operator mentiobefre a system of Egs.(9), we
remind an expression after Eqs.(10) for currentsifgnnside a single scattering
antenna in terms of its single scattering operatwt incident electric field, with

rewriting the total electric field (6) everywhenmand and inside antenna as

E,(r) =E%(r) + [dr'Ggs(r —r") I 5(r") (14)

12
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Resolving this equation with respect to currentsitgn], (r) gives a convenient tool

to find the single scattering operator Green th@ooé perfectly conducting antenna.
But previously to make so we need discussing sajaaeral properties of Eq. (14)

for a body with finite dielectric permittivity.
The integral Eq. (14) for electric fiek(r), with replacing J;(r) to
V,(r)E(r), is known in wave multiple scattering theory fotong period of time

and often related to pioneering papers of Foldy 8l Lax [29]. Nevertheless, an
opinion exists [30] that one needs verifying cotesise the Eq. (14) with boundary
conditions on the body surface directly. In thismwection we would like to make the
two following remarks.

First, as was mentioned after Eq, (8), the Eq. (& been derived [16] with
the aid of vector Green theorem and accountindgpthmdary conditions.

Second, Eq. (14) is a three- dimensional singutdegral equation and
demands some accuracy at handling with it. If poins placed inside the body one
has to take into account the strong singularittheftensor Green function, Eq. (11),
at r' - r, with decomposing [31-33] the one into a deltaabirfunction term

(1/k )3,; 0(r —r’) and principal partPSG (r—r'"), where a constant tensor
a,p depends on the shape of the exclusion domain ohimselefine the principal
part. If the exclusion domain is an infinitesimahere the tensom,;=9d,; /3.

Substituting the decomposed tensor Green functitmkq. (14) gives after [32,34]
an equation
F,(r)=E%(r)+Lim,_, [dr'Gg,(r-r)V(r')Fs(r’) (15)
\r r'lza
where integration in the RHS is performed over bediume, with excluding an

infinitesimally small spherical domain around point A local electric field F(r)
and transformed scattering poten¥4r) are defined by

€A+2£ E\—E

a2
E(r);  V(r)=-3K 2

F(r) =

x(r-n) (16)

13
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The strong singular term of the tensor Green foncin Eg. (11) atr’' =0 and
r — 0 has a form(J,4 —3rc,r/3)/r3 and becomes of zero value by averaging over

unit vectorf along vectorr directions. Hence the integral in the sense afqgipal
value in the RHS of Eq. (15) is good defined oné ean be expressed according to
general theory of many dimensional singular intesgf85] as sum of absolutely
converged integrals. However, Eqg. (15) does notvstimectly its consistence with
boundary conditions. Therefore we transform thigadign to a physically transparent
form usual for theory of electromagnetism [27].

Let us apply a lemma (see, e.g., [36], appendixaSthe rule to bring out the
second derivative outside the three dimensionglusan integral

Lim, o [dr'0,0,G,(r-r")a(r)

r-r’za

| 1 (17)
=0,0,Lim, 4 jdr’Go(r—r’)a(r')—g o a(r)

r-riza
where a(r) is some scalar test function. This lemma enables t transform
Eq.(15) as follows
E(r) = Eo(r) + (k2 + Odiv) N(r) (18)
Here M(r) denotes the Hertz vector that is written in teohthe body polarization
vector P(r) =[(&, —€)/4n] E(r) as

,explk,r-r'
r-r'

) () 19)

ﬂ(r):ijdr

with omitting the limit symbol at the RHS integralhe scalar electric potential
¢(r) =-div[](r) is evaluated by applying the divergence operatmteu integral

sign in the RHS of Eq. (19). Then similar to thesecaf dielectric polarization in
electrostatics (see [27], paragraph 3.13) one cdroduce a volume density

o(r) =—-@/&)divP(r) of body electric polarization charge for pointinside the

body and a surfacer(rs) = 1/ €)nP(rg) density one for points on the body

surface wheren is the outward unit normal vector to the surfadee surface charge
14
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Is coursed by polarization vector discontinuitytheg body surface crossing and leads
to discontinuity of the electric field (see [27]arpgraph 3.15) on the body surface

according the equation

E,-E_=4/mon (20)
where the subscript plus and minus are relate@édmns out and inside the body at
surface pointrg, respectively. Eq. (20) means discontinuity thenrad component of
electric field at the body surface crossing aceuydp relationenE, = £,nE_ as

well as continuity of electric field tangential cponent at the body surface crossing.

Having verified the consistence of Eq. (14) witke thoundary conditions on
the body surface, let us return to system Eqgs. &2) (13) for currents’ densities
inside two coupled antennas. In the limit of a eetl{y conducting antenna the

current density inside its volume becomes to bdiged near the antenna surfae

Therefore we write, e.g](r)dr =7 %(r) dS wheredr andd S are elements of

antenna volume and surface, respectively, as weﬂ(%(r) and T(l)(r) are antenna
volume and surface current densities, respectivlg. write similarly a relation

Top(ror)drdr’ = t(r,r') dSdS defined a surfacel - scattering operator

t,(r,r'"). Substituting into Egs. (12) and (13) gives

4
77& 9 =d S, typ (17, n) (21)
E96)+ a8, Ly )Gyt -0 i)
and
A ’ '
_ﬂ, @(r,) = jd S, tp(a, 1) (22)

[EZ () +Id S, Lg, (R )Go(r, -1 )i;(/l) ( )I
Here the indices 1 and 2 are related to antenmaasl 2, respectively, but in deference

from Egs.(12) and (13) the integrations are perémrnmow along the surfaces of

15
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antennas 1 and 2. Because the total electric fle{@) on perfect conducting
antenna’s surface is equal to zero the Eq.(18takkerm
E% (1) + Lys(N)[d S Gy(r =) iyp(r') =0 (23)

If point I is placed on the antenna 1 surface. Resolvin2Bpwith respect to the
surface current density and bearing in mind aicelat

4 . ' ' '
ifﬁ“ () =[dS te(nn) E3M) (24)

one can get the desired single surfécescattering operatdy,;(r,r’) of antenna 1.

Coupled receiving linear wire antennas
Consider the case of linear wire antennas in tha fof thin vibrator- dipoles
to be parallel toz axis and occupying the regiorsh < z< h as depicted in Fig.1.

For a cylindrical vibrator with diamete2a only tangential componens(z) of the
surface current density (z) exists and one can introduce a total current

| (z)=2nai,(z) in the cross-sectiore of the vibrator. Eq.(23) for the surface

current density of a single antenna is transformetthe case of linear wire antenna

under consideration to the Pocklington integraladiqun [20] (see also [37])

2
(é?z*kiZJAz(r =a,2) =iwe'E%;(r =a,2) (25)
Z

with vector potentialz -componentA, (r, z) given by

SRR 1 (2) (26)

1 2n h ’
Az(r,z)—m£d¢_jhdz

Here R=|r -r'

as well as the observatian= (r,¢,z) and sourca” =(r',¢',2")
points are presented in cylindrical coordinatese Zh component of vector potential
(26) is evaluated asymptotically for thin vibratoear zone, wherd; r <<1 and

R= z-7

, as a sum of logarithm’s and addition terms

A(r,2)==21(2In(kr)+WI[l,Z] (27)
16
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with addition termW([l, z] having a current functional form

z—-7

!

W[l,2]= jd {z jdl(z’)—ikil(z")}equ K,

Substituting the vector potentiad - component asymptotics (27) into Pocklington

integral Eqg.(25) leads to the Leontovich — Levirrsien [18] of Hallen integro-

differential equation [19] (see also [37]) for amt distribution| (z) along single
linear wire thin vibrator-dipole receiving antenna

‘;z'+k'2| =-iwe' n{E2(9+G[1.4}; 1h =0 (29)

where current functiondB[l , z| is defined by
~iwe' G[l, 7] = £d+k'zjw[| 7] (30)
z°

Remind that 7 =1/(2Ink;a) is small parameter in asymptotic limit of “big

logarithm”.
Relation (24) between a single antenna surfacesguensity and antenna
single surfacel - scattering operator takes in the limit of lingdre thin vibrator —

dipole antenna the form
4726() h ] ] ]
iCZ|(z): [dZ t(z.2)E)(2) (31)
~h
with a single wireTl - scattering operatot (z, z') defined by

2n
t(z,2) = jadcojadcdtm 2.0,7,0)) (32)

Similarly, the system of Egs. (21) and (22) forface current densities of two
coupled antennas passes to equation system fccmttuIrFQ)(zq) distributions along
two coupled linear wire antennag = 1,2 written in terms of single wird -

scattering operators,, (z,,z,) as

17
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4:&)| (z)= Idzltl(zl’ z) |:E0(Zl) +L1,(2) _[dZ;Go(Zb )19z } (33)
' “h ~h
and

‘I‘Z‘w @(z,) = | dzztl(zz,Zz){Eo(Zz)""— (Zz)jdzlGO(ZZ’ 2)19(z )} (34)
h “h

Here G,(z,2,) = explk; R,)/(-47R,,) where R’ =b® +(z—2,)* andb is the
distant between antennas (Fig. 1). In the nexi®egte present asymptotic solution

to Leontovich — Levin-_Hallen Eqg.(29) and to eqoatsystem (33) and (34).

Current distributions along two coupled tuned receving linear wire
antennas in the limit of “big logarithm”

Bearing in mind the small parametey one can apply after [18] the

perturbation method of solution to Eq.(29) for emtrdistribution | (z) along single

linear wire antenna in the form of expansibr | ; +7 I1+/72 |, +--- with result of

substitution
(;‘2 k'ZJ 0(2)=0; 14(th)=0 35]
d 12 : 1 0 .
(d2+k1jll(z):"wf{Ez(Z)JfG["Z]}’ L()=0  (6)
Z

This system of equations should be resolved suieebgsWe restrict ourselves by
simple case of tuned vibrator-dipole.

The length2h of tuned vibrator — dipole is equal to the wholeltiple of half
wavelength A, /2 in the biological objectk;h=n7n/2 or2h=nA, /2, with n

being integer. Eq.(35) for zero approximation haslation|,(z) =1,¢,(2), where
|, is current amplitude and functiony,(z) =cos(k;z) if n is odd and

¥,(2) =sin(k; z) if n is even. Current amplitudé, is defined by orthogonality

18
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condition of zero approximation to RHS of Eq.(36} the first approximation that

after some algebra gives
1 h
= [dzgy, (D EZ (D) (37)
Zi *h

The quantity Z, has sense of input impedance of single vibratdipele feeding in

the current maximum point, whelh':?(z) =Vy0(z-12,) and ¢¥,(z,) =1, and it is

evaluated via formula

= Di (277n)-i S(277n) (38)
1

Here the functionsSi(x) and Di (x) are defined by integrals

1-cost

S (x) = _[dtsmt, Di (X) = jdt (39)

with S'(x) being the integral sine [38] and regular functiEﬁh(x) related to the
integral cosineCi (x) and Euler constan€ ~ 0.5772 asDi (x) =In x+C —Ci(x).
Substituting current distributionl ;(z) along turned single vibrator- dipole
into Eq.(31) gives for single wiré - scattering operatot (z,2') of such vibrator-
dipole a separable value defined by
ic?

n_ L :
H{)t(z,z) = leﬂn(z)é[/n(z) (40)

The separability property of single wirke- scattering operator makes the EQs.(33)
and (34) for current distributions along two cowpli®ear wire antennas to be exactly

resolved. One can write out result of this resoluin a form similar to the case of a
single linear wire antenna putting® (z,) = 1 {? ¢, (z,) where amplitudes ¥ of

current distribution along two coupled linear wargtennas are given by

o_ 1

1- Z J.dzll’[/n(zl) E; (Zl) t 3y, J.dzzwn(zz) E; (22) (41)
1

lo

and

19
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1
o= g { J dzatpn () E7(22) + s, I dzy,(2) B2 (2) (42)
1

Here the indices 1 and 2 are related to antenaasl 2, respectively, and integrations
are performed along these two antennas. A spemfipling factora,, =-Z,,/2Z;
where Z,, is mutual impedance [37] of two vibrator - dipolesdefined by integral

equality
! h 2 h
| e 2, 0
@ = Idzll//n(zl)(klz "'2) IdZZGO(Zl, Z) Y, (2,) (43)
T “h 0z )

Transforming double integral in this equality RH$ the method [25-26], with
applying part by part integration, leads to a wogkiformula for coupling factor

evaluation

= f(x)+ T(x)-21(x) (44)

ky
where a functionf (X ) is expressed in terms of integral cosine and mategine as

f(x)=Ci(x)+i S(X) and parameterx, and X, have a form

=n n[+1+A/1+4hZJ (45)

< 1.0
:§ ]
< 0.8

« 0.6 -

<

' 0.4

g
£ 0.2
8 ,
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&
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Figure 2. Dependence of the real (solid line) andginary (dashed line) parts of

the specific coupling factor &, = Z;,/Z; of two half wavelengti?h = A, /2

antennas versus normalized distabé@h between antennas.

An useful asymptotics for coupling factay, at small distanceb between antennas

reads

ki /e’

~—1—in9

a12‘b/2hﬁo - h (46)

1

where input impedanc&, of single vibrator — dipole is defined by Eq. (38)g.2
represents the real and imaginary parts of the lcmudactor a;, versus the
dimensionless distaiit/ 2h between two half waveleng®h = A, /2 vibrators.

In the next section we apply the presented curreidiributions along single
tuned vibrator- dipole as well as along two coupieded vibrator — dipoles to the
problem of antennas’ exciting by a biological objgermal radiation via the object

temperature homogeneous component.

Exciting single and coupled tuned receiving linearwire antennas by
equilibrium thermal radiation
According to the general theory [6] the electronetgnthermal radiation of a

heated absorbing body is created by a random Eleetdume current density

7¥¢(r) with the spatial correlation function spectral signgiven by

a0 = w0 500 =) @)

where ©(r) denotes the body temperature multiplied by theZBwhnn constant. In
this section we are interesting in effects of hoermepus componen®, of the

biological object temperature. In this case onaioktfrom Egs. (5), (11) and (47) the
following expression for the incident on antennamdom electric field spatial

correlation function spectral density
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(EAMEY(r)) = —4C‘;e MG, (r —r') (48)

that is a standard form [10] of equilibrium thermmadiation electric field spatial
correlation function spectral density.

Apply first the expression in Eq. (48) to the cadea single tuned vibrator-
dipole antenna exciting by a biological object thal radiation via object
temperature homogeneous component. Eq. (37) gorethé fluctuations’ spectral

density< I 02> of current distribution along receiving antenngétade an equality

s

where one sees in the RHS integrand the auto-labom function of random electric

j dz j dZ ¢, (¢, (2) EJ(QENZ"), (49)

z)*

field inside antenna. Using for this auto- cornelatfunction the expression in Eq.
(48) and transforming the double integral by abometnoned method [25-26] leads

to

(50)

that is actually the Nyquist formula for thermatgation in conductors [39].
Turn now to the problem of two coupled tuned vibratipoles’ exciting by a

biological object thermal radiation via object tesrgture homogeneous component.
2
On base of Eqgs. (41), (42) and (48) the fluctuati@pectral densit;<| él) > of

current distribution amplitude along, e.g., thesani 1 is given by relation
2 212 /I, @2
2z, 1-ag <|c()) >

h h
= [1+a%) [d2 [d 20, @)0n(@) EAE @), 1)

-h -h

h h
+2(Reay,) [dz [dz,0,(2)¢.(2) EX(2)EN(Z))

-h -h
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The first double integral in the RHS of this raedatitakes into account electric field
auto-correlations along single antenna 1 and siagtenna 2, as in the case of the
Nyquist formula in Eq. (49) derivation, and was sidered actually in [9]. In
deference, the second double integral takes intoust cross-correlation of electric
field fluctuations along antenna 1 and antenna®was missed in [9]. Proceeding

evaluation of double integrals in the Eq. (51) RE&s to the following result
2\ Rez, ©
N =T (52)
" 7
where factor f;, of equilibrium thermal radiation coherence betwéen coupled
antennas has a real value and is defined by
1 2 Re(Z,a,,)
f1o = 2{1"' a,|” —2(Reay,) T (53)
A part of this factor, which accounting for therteil+\a12\2 only in the Eq. (53)

RHS square brackets, was obtained in [9] on a phenological level of

consideration, that is in terms of coupled antednanput impedanceZ;,, =

Z - (2122/21) and mutual impedancé,,. Asymptotics in Eq. (46) for coupling
factor a;, at small distanceb between antennas shows that factor in Eq. (53phas

limit f;, — 1/4 as distant between antennas becomes much snieietength.

Exciting single and coupled tuned receiving linearwire antennas by
thermal radiation from modeled local temperature irhomogeneity

In the preceding section a problem was considebeditasingle and coupled
tuned vibrator-dipoles’ exciting by a biological jett thermal radiation via object
temperature®(r) homogeneous componef},. One can relate to this temperature
homogeneous component a random electric volumeemurdensity component

Joc(r) in Eg. (47) LHS. Similarly we can connect the abjéemperature local

volume spatial variatiord O(r) with a corresponding local random electric volume
23
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current density variatiod j ¥°(r). Supposition about statistical independence from
Joc(r) leads to the spatial correlation function speatiesity for local variation
J7¥°(r) in a form of Eq. (47), with replacin@(r) to dO(r) in the RHS of this
equation that is

. SrC . SC 1 1 " !
<5Ja (Ndi, D(r)>:4nzwg(r)o*@(r)o*aﬁo*(r—r) (54)

Egs. (5), (11) and (54) give expression for thedewst on antennas random electric

field OE°(r) spatial correlation function spectral density ealdy local spatial

variation of the object temperature
3
I w I n
(OEA(NSEF(r) =4 [drGoy (r =) Gy (' =) &'(r) 90 (1) (55)
Detailing the idea about local random electric woducurrent density variation one

can split this variation into sumdj¥°(r)=> 07 °(r) of three mutually
a

perpendicular and statistically independent randoumrents (random dipoles)
0j°(ry=0jJ°(r)e, where &, are the unit vectors along the y,z axes,
respectively to @ =1,2,3. The random current®) j;°(r) satisfy the Eq. (54)
evidently. Correspondingly the incident random ®lecfield splits into sum

OE°(r) :ZJEﬁ(r) of three statistically independent incident randetactric
y

fields defined by
a - .

4 : I ! + SIC ]
(e (M) —Ifjjdr GL(r-r) 3% () (e,) (56)

Physically the random electric field Eﬁ(r) is created by random electric current
(dipole source) J,"°(r).
We have come up closely to our basic model of ramdtectric dipole source

inside a biological object oriented parallel togden(Fig. 3) or coupled (Fig. 1) tuned
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linear wire antennas. In this model only the randdectric field 9 E2(r) created by

random electric currend ]2 (') is taken into account. We think the last random

electric current as being confined inside a thid @nite cylindrical region, which is

extended in limitsz -Az /2<7 <z +Az /2 along theZ'-axes and defined by a

Figure 3. Schematic showing of vibrator antennaghermal radiation field of
random electric dipole sourced J¥¢(r') which is extended in limits
z -Az [2<7 <z +Az /2 along theZ'-axes and defined by a vect& in the

X,Y;- plane (gray area) with lengfR, and azimuth anglé .

vector R, in the X,Y;- plane as, e.g., in the case of the single vibradgole
antenna (Fig.3). Integrating the random electritum@ current density variation

Y¢(F') over the cylindrical region cross- section leanls ttotal random current

variation d15°(Z') in chosen cross-section, with a longitudinal datien function

spectral density giving by

815°(2)815°(2) ) = we 22 502 5(2- 2) (57)

L
4n Az
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Here AQ is a volume of the random electric dipole source.
One started actually to consider a problem of egisingle receiving linear
wire antenna by thermal radiation from local tenmapa@re inhomogeneity. In the

framework of the introduced random electric dipgdeirce model, the - component

5E20(r) of the incident random electric field along singlbrator- dipole antenna
(Fig. 3) is given according to Egs. (11) and (5¢)dation

W 529y = [z k2 + 2 |Go(m2) o1, (2
A 2(21)—I Z| Ky 322 0o(z,2)901,(Z) (58)

1

where a Green functio®,(z;,2') is obtained fronfs,(z,,z,) defined after Eq.(34)
by replacingz, to z’and b to R;. The incident random electric field in Eq.(58)
excites along single tuned vibrator- dipole regegvantenna a current distribution
with random amplitud®l , given by Eq.(37), with repIacingEf(z) to JE?(Z) in
the RHS integrand. Thus one gets

4” h I I 62 I I
215| 0~ @ _[dzlwn(zl).[d z (klz +622]GO(211 Z)5| Z(Z) (59)
-h

1
Applying to the RHS of this equation the integratipart by part with respect to
variablez, , similarly with integral in Eq. (43), gives

47

[dZ]wh (h)Ge(h,Z) —; (- h)G, (-h, 2)]31,(2)  (60)

For the case of tuned vibrator —dipole of lengdh =nA, /2 equal to odd whole

number n of half wavelengths Eq. (60) is transformed as

__aeoz Koo lexplikR.(2)) | expli kR (2)) :
Z,0l, == (-1 iw,jdz{ R (2) + R (2) ol,(Z) (61)

where R, (Z) are defined by R?(Z) = R3 + (h¥ Z)? (see Fig.4). According to

obtained equation the two spherical waves are gated from a poing’ of random
electric dipole source towards receiving vibratgrete ends. Bearing in mind the

reciprocity between receiving and transmitting ants one can say also that two
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spherical waves are propagated from vibrator- e@ipehds towards the random
electric dipole source and interfere on the soarea. Egs. (57) and (61) enable us to

write out for the fluctuations’ spectral densi<<$5l02> of current distribution along

receiving antenna amplitude caused by random aedipole source thermal
radiation a following equality

2
we' 2 2 1 _
|1z <5| >:a)£”AQ JOF (2) 62)
e =
A function F(2)in the RHS of this equality has a form of integral

1 Z+Az /2

F(=— [dZF(Z) (63)
Az z-Az/2

where integrandF (2) is defined by

F(2)= A2+ A2() +2A, (DA (9codki (R (D -R (D)) (64)
with A, (2) = exgd-kR, (2)|/ R,(2). Similarly to optics [36] the definitions in
Egs.(63) and (64) can be called the single lingae veceiving antenna interference
functions for the cases of finite extended and ppoamdom electric dipole source,
respectively.

The spatial integral averaging in the RHS of E®) (6long random electric

dipole source extension we perform using an apprate formula

z+Az /2
p Jazooda@] = % % oodaca) (65)
z-Nz/2

where a function (2) =(sinz)/z. This formula is derived by writing
dz' =da(z')/(da(z")/dz") and approximate bringing the denominat&(z')/dz'
outside the integral in the middle point Actually we needs spatial averaging the

fast varying cosine term oF (2) only that gives forF (z) an expression
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F(2=A(2+A(2)

2k;h Az , (66)
+ ZA(Z)A(Z)F{ &(z)l+ R(z)} cogki(R.(2) - R.(2))]

As one sees the interference functidh(z) for finite extended random electric

dipole source is different from such interferenaection F(z) for point source on a

2.0 7

N:
= 1 0 4
Fl'-q
0.5 1
0.0
-3
8 -
6 - 2
4 1
5 |
(b)
0.5 1.0 1.5 2.0 2.5 3.0

HW HM

Figure 4. & The normalized interference function versus ndized height

z,=z/h (from the XY, plane) of random electric dipole point source at
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different values of the point source normalizednseg depthsR,,, =R /h,
with neglecting object absorptioik,, = 1 (curve 1), 1.5 (2), 2 (3), and 6 (4)) (
the normalized seeming depRy, ,, versus HWHM of the curves like ones in the

panel (a) is delivered by curve 1 and calculate&tpy67) is given by curve 2.

[ -factor that defines a spatial coherence degrestanded random electric dipole

source.

Our next task consists in study the interferencection F(z) extreme
properties depending on random electric dipole sowxtension an®@D position
defined by mentioned above coordinateand vectorR;. In this case the coordinate
2 gives height of random electric dipole source Eerbove (=0) or under
( z<0) the single linear wire antennX,,Y;- plane (Fig. 3) while the vectdR,
characterize2D position of random electric dipole source centrgjgrtion on the
X1,Y;-plane that can be characterized also by the veRtorlength R; and its
azimuth angleg (see Fig. 3). The minimum valuB, of the vectorR; length
corresponds to the azimuth angbe= 71/2 and gives us the real depth of random
electric dipole source centre, wilR; being a seeming depth of this source centre.
Henceforth the aim of the single receiving antesc@nning along biological object
boundary surfacey; =0 consists to get the random electric dipole soweetre
inside the X;,Y;-plane, first, and to define the source centre dcegith by, e.g.,
placing this centre on the/;- axes, second. We intend to show that interference
function F(z) extreme properties can be a physical base tozeealich kind of

single receiving antenna scanning strategy.

The interference functiorf (z) has extreme value — maximum at= 0, at last. One

can verify this statement easily in the simple cak@oint random electric dipole
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source, with neglecting effect of absorption whateriference functionF (z) has for

small z the Taylor expansion

@—1— 22 +...0 Rg :a'—h_z

F(0) 2 Z12/ 2 | 6 Z12/ 2 Rg

(67)

Here F(0) :4/R§ is maximum value ofF(z), with R, = (Ré +h?)Y2 peing
equal toR, (z) at z =0. The quantity z;,, is half width at half maximum (HWHM)
of the Taylor expansion in Eq. (67). A constantin the RHS of the second Eq.(67)

0 15 20 25 3.0
HW HM

Figure 5. The normalized seeming deph,, versus HWHM of the dependences
of normalized interference function calculated by.(E6) in the case of point
source but accounting for an absorptiétih in the units ofnA, /8dy =

nx0.218z: n = 1 (curve 2), 2 (3), and 3 (4). The referemave 1 (no
absorption) is the curve 1 in Fig.5(b).

is defined a8a =1+ (77/3)? for the half wavelength vibrator antenna.
Eq.(67) shows that HWHM of interference functidA(z) can be used to
determine the seeming depity, of random electric dipole point source. Becauge th

HWHM is experimentally measured quantity we studxtrthe interference function
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F (z) extreme points and their HWHM in details, withitakinto account effects of
absorption and random electric dipole source extans

Fig.4(a) presents calculated by EQ.(64) dependeoicethe normalized
interference functiorh? F(z,) on normalized heightz, = z/h of random electric
dipole point source at a set of the point sourcematized seeming depths
R, =R5/h ranged from 1 up to 6 when the curves have only peak and
absorption is neglected. From this calculated curwe take HWHM and plot
HWHM against the known normalized seeming deRth), (Fig.4(b), curve 1). The
curve 2 in the Fig.4(b) plots HWHW according to thaylor expansion in Eq. (67)
that is the quantity(z,,,)/h. The Fig. 4 shows that HWHM of interference fuanti

growths monotonously with growing the random eledlipole point source seeming
depth when effect of biological object absorptian neglected. The curve 2 in
Fig.4(b) predicts substantially smaller value faVHM at given R, compared with
the curve 1 in Fig.4(b) since the Taylor expansiealing with only the peak top of
the curves in the Fig.5(a). In Fig. 5 we repeatdhere 1 from Fig.4(b) and test the
role of absorption in the case of point source. dbsorption is measured in the units
of kih=nA; /8dy =nx0.2182 where n = 1, 2, and 3. The units of absorption

measurement are chosen, with taking into accouatt fitr tuned vibrator-dipole
kijh=nn/2 and for the human head brain, /dy =7/4, according to

Introduction. Fig.5 shows that the more absorpisotihe less HWHM corresponds to
the given point source seeming depth. In anotherdsyothe maximum peak of

interference functionF(z) at z=0 becomes narrower with growing absorption.
Figs.6(a,b) depict HWHM of interference functionaagst the normalized seeming

depth R, at a set of random electric dipole source norradliextensioné z/h,
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(b)
.0 1.5 2.0 25 3.0
HWHM

=N

Figure 6. The normalized seeming dejih,, versus HWHM of the dependences

of normalized interference function calculated bg.(E6) with neglecting of
absorption 4) and with absorption accountin@)(in the case of point source
(curve 1) and extended sourdez/h = 1 (curve 2), 1.5 (3), and 2 (4). The

absorption is equal t& h=A1,/8dy =0.2182. The curves are enumerated by

the figures in a manner that the lower is the cdineehigher is its number.
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with neglecting absorption, Fig.6(a), and accoun@bsorption, Fig.6(b). It is seen
from the panels (a) and (b) of Fig.6 that the ghisam leads only to an increase in the
slope angle of a “bundle” of the curves with resgecthe HWHM axis. From the

other hand, comparison of Fig.5 and Figs.6 dematestrthat absorption and source
extension make change in different manner the HWidéiidendence on source centre

seeming depth. As one can note, the maximum peakesference functior- (z) at

2z =0 becomes wider with growing the source extensiohatih cases of neglecting
and accounting absorption. In addition to noteddfiects of absorption and source
extension are more sensitive for relatively big amdall source centre seeming
depths, respectively. Fig.5 curves allow one agetermine the point source seeming
depth at given absorption as Fig.6(b) curves peong to get a source centre
seeming depth, with knowing biological object alpsion and the source extension.
If in the last case the source extension is knoppr@imately with some accuracy
the source centre seeming depth is obtained alsmx@mately with corresponding
accuracy.
Having described Fig.4(a), we mentioned that themadized interference function
curves have only peak when source normalized seed@pth ranged from 1 up to 6
and absorption is neglected. Fig.7(a,b) shows tbatsmaller values of source
normalized seeming depth the normalized interfexefunction curves can have
several peaks, with possibility for side peaks §eiot less the central peak (Fig.7,
curve 4 has three equal peaks). The side peaksbmayudied in manner similar to
the central peak consideration. Nevertheless wienailstudy side peaks here.

Figs.4, 5, and 6 show that one can actually getrdmelom electric dipole

source centre inside thé€,,Y;-plane of a single receiving linear wire antennig.@j,

via scanning this antenna along tlg- axis on the biological object boundary

surfacey, = 0 and defining the HWHM of antenna interfererigaction F(2)

maximum atz, = 0. As this takes place we obtain the sourcereesgteming depth

33



XYPHAN PAOUOINEKTPOHUKWU, N12, 2011

100 -

80 -

40 -
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h F(z )

20 <

Figure 7. The normalized interference function usrsiormalized height of
random electric dipole point source with neglectofgect absorption at different

relatively small values of the point source norzedi seeming depthsa)(R- |, =
0.1 (curve 1), 0.2 (2), 0.3 (3), andh) (R, = 0.455 (curve 4), 0.8 (5), 1 (6), and 2
(7).

34



XYPHAN PAOUOINEKTPOHUKWU, N12, 2011

R, with knowing the object absorption and sourcesesion. Now we intend to
define the real deptR, of the source centre in the centreald position inside the
X1, Y;-plane, via antenna scanning along tRg-axis on biological object boundary

surface.

X shift
Figure 8. Schematic showing of the upper half spache X;,Y;- plane with
antenna shifted from the origin point to the paith the Xy, coordinate along
the X, axis. The symbole) shows the centre of the random electric dipole

extended source on th¥,,Y;-plane. Vectorr; is a current value of the vector

R, when the antenna has the coordineig, .

Fig.9 depicts schematically scanning the randonttede dipole extended

source with centre on th&,,Y;-plane by shifting the single receiving linear wire

antenna alongX;-axis to position with coordinatexy,; <0. The interference
function F (X4, ) of the shifted single antenna is obtained from(@&). by setting

Zz =0 and has a form

hF (Xt ) = ZA({:L"' r(klhAZhH (68)

Fo.n
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with Ay = expCkihre,) /1, wherery, = (5, +)Y%. The quantity r,, is

function of shifted antenna position and given (Bigby relation

r5n = Roon * (Xshift,h - RDx,h)2 (69)
where Ry, , =-R;,cosp <0, 0< ¢ <7/2 is projection of vectorR,,, on the
Xi-axis. All quantities in Egs.(68) and (69), havidgmension of length, are

normalized to antenna half length
The interference function of the shifted singleeanta in Eq.(68) has evidently

maximum atxq,q = Ro, , Where the scanning antenna is brought in neacsstign
to the random electric dipole extended source, wliitant r5, between source
centre and antenna centre becoming equal to tHedegdh Ry, of the source

centre. The two quantitie®k, , and Ry, are connected between them by relation

Réx,h + Réo’h = Ré’h. Therefore one can get the real depth of the souemtre
Rogn, Pprovided one knows from scanning experiment tmgerma position
Xgitt = Roxn Where antenna interference function has maximure. Mive also

possibility to determine the real depth of the seucentre by study the maximum
peak of interference function in Eq.(68). The Tayxpansion for small values of

Xgitt.h ~ Roxn 9ives a representation similar to one in Eq.(id) aritten as

F (Xt n) _1- (Xeniftn ~ RDx,h)2 b

—— = (70)
F(Roxn) 2%/

Here F (R, ) is maximum value oF (X4, ) - The quantityx;,, is HWHM of the

Taylor expansion in Eg. (70) defined by

1 2 " kihAz,
2 2|:1+ kih roon + rl[r (71)
X112 Tooh 0o,h
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h
—

Lo |

h F(z =0)

2\'shift '

Figure 9. Dependence of the normalized interferdnoetion on a shift of the
X;-position of antenna from the origin point: sdiites numbered by the figures
and dashed lines numbered by the same figures ibuthe stroke correspond to

Ry = 1,4z =0andR,, =2, Az, = 2, respectively. Magnitude of the azimuth
angleg is equal to 1° (curves 1, 17), 30° (2, 2"), 60°33, and 90° (4, 4.

where quantityry,, = (R%, +1)"* and functionl; () is defined according to

sinz
cOoSz— ——
Z
: (72)
1+ sinz
Z

(2 =;

Eq. (71) shows that the HWHM,,, is related to the real depth of the source centre

Ryo, directly and becomes smaller with absorption gngwiBearing in mind an

asymptotics; (z) = —z° /12 asz - 0, one can conclude also that the HWH4},

increases with taking into account a small extansiathe source.
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HWHM

0.75 - . : , : :
0 30 60 90
¢ ,degree

Figure 10. Dependence of HWHM of interference fuorxcEq. (68) on the azimuth
angle ¢ : solid lines numbered by the figures and dasheeslinumbered by the

same figures but with the stroke correspond\ty = 0 and Az, = 2, respectively.

Magnitude ofR-,, is equal toR-,, =1 (curves 1, 1'), 1.5 (2, 2'), and 2 (3, 3).

Fig.9 presents the normalized interference funcfrem EQ.(68) versus to

normalized shift Xy ,, of scanning alongX,-axis antenna,. with no absorption

taking into account. Fig.9 shows that normalizet@rierence function from EqQ.(68)
shift towards negativex,-axis direction with decreasing azimuth angleaccording
to above position of the normalized interferenemction maximum. Meanwhile the
normalized interference function becomes wider wgtbwing the azimuth anglé,
that calls for growing the real depth of the sowrertre, and with growing the source
extension also. Fig.10 presents the HWHM of norpealiinterference function from
Eq.(68) versus to the varied azimuth angleat fixed the normalized seeming depth
but for a set of source extension, with no absonptaking into account. Fig. 10
shows again that the normalized interference fonchiecomes wider with growing

the source extension. Fig. 11 generalizes confefigdlO on the subject to take into
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HWHM

o 30 60 90

p ,degree

Figure 11. Dependence of HWHM of interference fiorctEq.(68) on azimuth
angleg at Ry, = 1: Az, = 0 (solid curves)k; h = 0 (curve 1),4, /8dg (2), and

2, 18dy (3); kjh = A, /8dy (dashed curves)z, = 1 (curve 2'),Az, = 2

(curve 27).

account the absorption, showing that the normalizgdrference function from
Eq.(68) becomes narrower with growing absorptiod ander with growing the
source extension. Fig.12 presents the final depeedef normalized real depth of
centre of random electric dipole extended sourasugethe HWHM of normalized
interference function from Eq. (68), with takingaraccount absorption. The curves
in Fig.12 show a competition between effects obgtson and source extension that
make the HWHM smaller and bigger, respectively.aAgsult of such competition it
IS seen a crossing, in particular, of two cundear{d 2”) in Fig. 12.

Before going above to study the maximum peak tdriarence function in
Eq.(68), we had mentioned that one can get thedegath of the source centre if one

knows from scanning experiment the antenna positionX;-axis where antenna

interference function has maximum. In this casethitee points’ set consisting of
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antenna centre origin position, the just mentioskifted antenna position and the

source centre position inside thg,Y;-plane (see Fig.8) form a rectangular triangle.

depth, rel. un.

0.75 1.00 1.25 1.50
HWHM

Figure 12. Dependence of the normalized depth efsburce position on the
HWHM (Fig.11) at Ry, = 1: Az, = 0 (solid curves)kih = 0 (curve 1),
A, 18dg (2), and24, /8dy (3); kjh = A, /8dy (dashed curvesfz, = 1 (curve
2"), Az, = 2 (curve 27).

Let us note in order to generalize such kind fograntriangle that one can consider

two positions of two single antennas 1 and 2 cerang X, -axis of theX;,Y;,Z
coordinate system (Fig. 13) when a many-side tfeargformed inside theX,,Y;-

plane by centers of these two antennas and randecrie dipole source centre

projection on theX,,Y;-plane. The lengthdx; and R,; of formed triangle two

sides can be determined separately via scanningrfeanas 1 and 2 alorfj - axis

on biological object boundary surfacg =0 and defining the HWHM of these

antennas’ interference function§;(z) and F,(z) maximums atz=0, in
accordance with described study the interferennetion in Eq.(66). After that one

can determine the real deptRy, of random electric dipole source centre by
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resolving the triangle , with knowing its two mented sides as two seeming depths
of source centre from two antennas centers and ikigoglistant between antennas. A
symmetrical position of random electric dipole smurelatively antennas, which
transforms the above many-side triangle into idescene, is especially interesting
for the case when effects of antennas’ couplingtaking into account. This case of
two coupled tuned receiving linear wire antennagiteng by the random electric

dipole source is our next task.

8j.(r)
base triangle n the
plane X, Y,
Z-<
R‘l | EZJ_
> !
0, bBg 0,

Figure 13. Schematic showing of two coupled antennahermal radiation field

of local temperature inhomogeneity.

In the framework of using random electric dipoleum@ model thez-

componento Ezo(zl) of the incident random electric field along aspled vibrator-

dipole antenna 1 in Fig. 13 is given as along singprator-dipole antenna in Fig.3

by Eq.(58). Analogous expression far componentJEzo(zz) of the incident

random electric field along coupled vibrator-dipaletenna 2 in Fig. 13 is obtained

from Eq.(58) by replacing, to z,. The incident random electric fieId§Ezo(zl)

and 0E,%(z,) excite along two coupled antennas some currettitdions with
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random amplitudes| &’ and 512 given by Egs.(41) and (42), respectively, with

replacing Ezo(zl) to JEZO(zl) and Ezo(zz) to dEZO(zz) in the RHS integrands.
Writing now equations similar to Egs.(59) and (0§ supposing the tuned vibrator-
dipoles to be of length equal to add whole numidenadf wavelengths lead us to

generalization of Eq.(61) in the form

Z,(L-a) 1Y = - (-p" 2 o :;s
: : : : (73)
[« exvlikiRy, (@) explikRy,(@))]
d S
J. z |:,uz::i R]_IU(Z’) + alZ/JZ:;_'_ RZIU(Z,) Z(Z)
and
2,0-a8) 31 = - (- K
: , : : (74)
. exp(l iRy, (z )) exp(l kiR, (2 ))} .
d S

Here sums are taken over index two values *+, with distancesR, (z') and
R,. (Z') being defined similar to the case of single andeinnEq.(61) and related to

antennas 1 and 2, respectively, in Fig. 13. Acogrdo Egs.(73) and (74) the two
spherical waves are propagated from a paimf random electric dipole source
towards receiving vibrator-dipole 1 ends as weltvas another spherical waves are
propagated from the same point of source towadsiving vibrator-dipole 2 ends.
Bearing in mind the reciprocity between receivimgl aransmitting antennas one can
say also that four spherical waves are propagated ¥ibrator- dipoles 1 and 2 ends
towards the random electric dipole source and fiteron the source area. Eqs.(57)

jointly with Egs.(73) and (74) enables us to getthe fluctuations’ spectral densities
2
<5IO(]‘2) > of current distributions’ along coupled receiviagtennas 1 and 2

amplitudes caused by random electric dipole sotireemal radiation the following

equalities

42



XYPHAN PAOUOINEKTPOHUKWU, N12, 2011

2
we' 2l 212 s @2 _ 1 " = (a)
[ki] Z)%1-4a4 <5|oq >_4 weNQ SOF @ (2) (75)

which generalize Eq.(62) written for a single annFunctiong= (9 (2) inthe RHS
of these equalities, with indice3=1,2 related to coupled antennas 1 and 2, have
form of integral averaging along random electripalie source extension in Eq.(63),
with integrandsF (¥ (z) being presented as
2
FO(2) = F.(2) +‘a12‘ F.(2) + 2‘312‘ Fi2(2) (76)
and
2
F@(2) = F,(2) +|a, “Fi(2) + 2/a, Fyy(2) (77)
Functions Fq(z) here coincides in physical sense with interferefwections for
point random electric dipole source exciting a Er@ntenna 1 or 2 and are defined
accordingly to Eq.(64) by
Fo(2) = AL (2)+ AL (2 + 27 (DA (Dcogki (R, (D -R-(D)]  (78)
where A, (2) = exd— ki’qu(z)J/ R, (2). While the functions in Eq.(78) we call
the auto-interference functions of single anterthasd 2, the functionk,;,(z) and

F,.(z) need being called the cross-interference functiohscoupled antennas

because the last two functions take into accouterference between a couple of
spherical waves (see Fig. 13), one of which prosg&om the point of random
electric dipole source towards a receiving vibratpole 1 end and another

propagates to a receiving vibrator-dipole 2 endt @sconfirmed by equations

Fo@= Y AL (DA, (2)cogki(Ry, (2) - Ry (2)+ ayy) (78)

uy=t

and F,,(2) = Flz(z)‘ a1, - —ay, Whereas, is phase of the coupling factey, defined

by a,, =|ay, expfa,,). The sum in the RHS of Eq.(78) is taken over hottices
M and v two values *, with including four terms. The written equatiofos the

cross- interference functions of antennas included@dition shift+ a,, caused by
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antennas coupling side by side with phase skji&Rzﬂ(z) - R]y(z)) equal to paths
differences of two spherical waves in the biolobalgect medium.

Consider dependence of antennas interference dunsck (Q)(z), defined in

Eqgs.(76) and (77) for the case of point randomtetedipole source, on the antennas

coupling factora;,. We see this dependence in a simple form of sgdtctors

\alz\z and 2a,| as well as in a complicate form of the additioragh shift in

expressions for the cross-interference functionsoopled antennas. Nevertheless the

complicate phase shift comes infg,(z) and F,;(z) with opposite signs and hence

transforms into a scale factor in the sum of tleeess-interference functions

Fia(2) + Fu(2) =2(cosay,) 3 A (2) Ay (2)codki(Ry, (2) - Ry ()| (79)

Y=t

Summing next Eqs.(76) and (77), with accountind E9), gives

FO@+FO @) =+a,)’ [F(2) +F,(2)]
+4a,/(cosar,) Y Ay (2)Ay (2)codki (R, (2) - Ry (2))]

Uy=t

(80)

Summing at last the basic Eqs. (75) defined thetdhtions’ spectral densities

2 _
<5IO(]‘2) > and reminding definition of functiors (¥ (z) give us

N\ 2
(a;e j lel—afzz{<5l(§1)2> +<5I(§2)2>} :47172605”AQ SOF*(z) (81)
1
with
- 1 z+Az/2
FEA(= 1 [az[FO2)+FO(2) ©2)
z-Az/2

The obtained three EQqs.(80), (81) and (82) showsina of the fluctuations’ spectral
densities of current distributions’ along coupledceaiving antennas 1 and 2

amplitudes caused by random electric dipole sotlmeenmal radiation has dependence
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on antennas coupling factora;, in a simple form of scaling factors
2 2 72 2|72

Although the RHS of Eq.(81) has a simple depend@mcantennas coupling
factor, the RHS of Eq. (80) leaves some difficolt $tudy via complicate structure of
four term sum, with each term describing interfeeenf a waves’ couple propagated
from a point source towards different antennas’sefitherefore we return to general
Eq.(78) for the cross-interference function of dedpantennas and consider a
mentioned above special case of symmetrical positif random electric dipole
source relatively antennas(Fig. 13) when a mang-s$ichngle, formed inside the

X, Y,-plane by centers of antennas and random eledipole source centre
projection on the X, Y,-plane, becomes isosceles one. In this case ofcaour
symmetrical position we have relatioh§ ,(z) = R,,(2), with index x4 ==, that
simplifies Eq.(78) immediately as

F1,(2) = F1(2) = F(2)cosay, (83)
where F,(2) = F,(2) = F(2) and F(z) is given by Eq. (64). The final physically

transparent result consists in equations

<5|(§1'>2> :<5|(§2,>2> :12<5|02> (84)

2
where <5I0 > Is presented in EQ.(62). Thus in the special cakesource

symmetrical position relatively antennas the botbss-interference functions of
coupled antennas become equal to auto- interfer&metion of single antenna

accurate to scaling factarosa,, as well as the fluctuations’ spectral densities of

current distributions’ along coupled receiving aimas 1 and 2 amplitudes become

equal to fluctuations’ spectral densities of curmdistributions’ along single antennas

. -2 . .
accurate to scaling factdr—a,, °. Ultimately one can reduce the scanning problem

of random electric dipole source via two coupleaetlireceiving linear wire antennas
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to considered already such scanning problem vieglesantenna, provided one is
able to place the scanning source into symmetgoaltion relatively antennas and
move the antennas 1 and 2 together, not separaielyy z-axes on biological

boundary surfacey, =0 (Fig. 13).

Conclusions

Theory of electromagnetic wave multiple scattertlygensemble of dielectric
and conductive bodies has been applied to studgledueceiving antennas. A basic
exact system of Fredholm’s second kind integraladquns for electric currents
excited inside antennas is derived and writtererms of the electric field tensor T-
scattering operator of a single antenna, the &edield retarded Green tensor
function of a background and the incident on arasnelectric field. In this
equations’ system an antenna is a body with givenptex dielectric permittivity on
some frequency, and electric current excited ingigeantenna means sum of volume
conducting and displacement electric currents. Bhaekground medium can be
inhomogeneous one with some complex dielectric pewity. The kernels of
derived integral equations’ system are not singtdarthe case of no overlapping
antennas, although the background electric fielde@Grtensor function is singular in
the origin.Such kind of three - dimensional singularity hasrbenet really at study
the wave integral equation for electric field irsssingle antenna in the homogeneous
background, by verifying consistence this integ@@hation with boundary conditions
on the antenna surface. As was demonstrated, antohake into account two sorts
of the homogeneous background electric field Greéensor function strong
singularity: (i) electric field Green tensor furanii decomposition into a delta Dirac
function term and principal part, and (ii) rule boing out the second derivative
outside the three-dimensional singular integral.

The derived integral equations’ system for electiigrents excited inside
coupled antennas has been applied to study nddrduerent effects caused by

thermal microwave radiation incident electric figdtribution along single or two
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coupled linear wire perfectly conducting receiviagtennas in the form of thin
vibrator- dipoles placed at heated biological obmindary surface and tuned to half
wavelength in the object. After having been negléatvave interaction of antennas
with biological object boundary surface and usegngmotic method of “big
logarithm”, the T-scattering operator of singleeamta in the form of tuned vibrator-
dipole has become a separable wire T- scatterirgyabgr that lead to analytic
evaluating the local total currents on two couptedeiving antennas and got a
dimensionless antennas’ coupling factor. Effects hmfmogeneous and local
iInhomogeneous biological object temperature compisnen receiving antennas
have been considered. Homogeneous temperature cemipwas treated as source
for equilibrium thermal radiation with standard rorof incident on receiving
antennas electric field spatial correlation funeti®his treatment led to a generalized
Nyquist formula for currents’ fluctuations exciteh coupled receiving vibrator-
dipole antennas, with accounting the auto- con@land cross- correlation functions
of random electric field inside each antenna anbath antennas, respectively. More
original results have been obtained at study effe€tbiological object temperature
distribution local volume change in the model framoek of random electric dipole
source inside object absorption skin slab ared) dipole source being parallel to
vibrator-dipole antennas parallel between themselaad placed on the object
surface. In the case of single receiving vibratpete antenna it was shown that two
spherical waves are propagated from a point ofaanelectric dipole source towards
receiving vibrator-dipole ends. Bearing in mind theiprocity between receiving and
transmitting antennas one can say also that twersjath waves are propagated from
vibrator- dipole ends towards the random electijpolg source and interfere on the
source area. This physical interpretation led sirlyilwith optics to single antenna
auto-interference function. Extreme properties iogle antenna auto-interference
function depending on random electric dipole sowxtension and the source centre
three-dimension position relatively receiving am&mn the biological object surface
have been studied in details. It was shown, inqdar, that the single antenna auto-

interference function has maximum at source cemé@ antenna equatorial plane,
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with half width at half maximum (HWHM) becoming mawer and wider under
biological object absorption and source extensimwmg, respectively. Ultimately a
method of random electric dipole source scannirgy single receiving vibrator-
dipole antenna moving along the biological objeatface was formulated. Two
scanning most simple strategy was considered:y(igldfining via HWHM the two

values of source centre seeming depth relatively amtenna positions with next
evaluating the real depth of the source centre yrsade triangle strategy), and (ii) by
getting a symmetrical position of source relativélyo antenna positions that
transforms the many-side triangle into a isosceles(isosceles triangle strategy).

In the case of two coupled receiving vibrator-dgahtennas 1 and 2, as was
shown two spherical waves are propagated from at pdi random electric dipole
source towards receiving vibrator-dipole 1 endswadl as two another spherical
waves are propagated from the same point of sowwards receiving vibrator-
dipole 2 ends. Hence side by side with above sirgleennas 1 and 2 auto-
interference functions, a cross-interference fuamcof coupled antennas 1 and 2 has
been introduced. The cross-interference functiatuges a complicate dependence
on antennas coupling factor phase. Neverthelesghenspecial case of source
symmetrical position relatively antennas the chossHerence function of coupled
antennas become equal to auto- interference functicsingle antenna, accurate to
scaling factor equal to antennas coupling fact@asghcosine. At the same time the
fluctuations’ spectral densities of current diatibns’ along coupled receiving
antennas 1 and 2 amplitudes become equal to fhimhsa spectral densities of
current distributions’ along single antennas, aatuto scaling factor in the simple
algebraic form of antennas coupling factor. Ultietgt the scanning problem of
random electric dipole source via two coupled turszkiving linear wire antennas
has been reduced to such scanning problem viggeaantenna, provided one is able
to place the scanning source into symmetrical positelatively antennas and move
the antennas 1 and 2 together, not separatelyg dbimlogical object boundary

surface.
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