Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 1
Contents

Full text in Russian (pdf)
Russian page

 

DOI 10.30898/1684-1719.2020.1.1

UDC 537.877+532.5.013
 

DETERMINATION OF the CURRENT VELOCITY BY Measurements OF NAUTICAL RADAR

 

A. S. Zapevalov 1,2, I. P. Shumeyko 2

1 Marine Hydrophysical Institute of RAS, Kapitanskaya str., 2, Sevastopol 299011, Russia

2 Sevastopol State University, Universitetskaya str., 33, Sevastopol 299053, Russia

The paper is received on December 16, 2019

Abstract. The analysis of physical factors limiting the accuracy of reconstruction of the field of the current velocity vector by measuring the radio signal scattered by the sea surface is carried out. The analysis is performed for a situation when sounding is carried out by a nautical radar. It is shown that one of the factors limiting the accuracy is the use of space-time characteristics of surface waves. The accuracy is limited by the ambiguity of the relationship between the spectra constructed in the space of wave numbers and frequencies. Ambiguity was found in field experiments in which the characteristics of the sea surface were determined in situ by wave gauges. To calculate the current velocity, it is proposed to use a procedure developed for high-resolution optical images obtained from spacecraft. This procedure is based on cross-spectral analysis of two images of the same area of the sea surface obtained with a small time interval. The current velocity is determined by the deviation of the measured phase velocity from the theoretical value following from the dispersion relation for gravitational waves. It is shown that the characteristics of nautical radars allow the use of this procedure for determining the current velocity.

Key words: sea surface waves, radio waves, current velocity, nautical radar, accuracy of remote measurements.

References

1. Zatsepin A.G., Gorbatskyi V.V., Myslenkov S.A., Shpilev N.N., Dudko D.I., Ivonin D.V., Silvestrova K.P., Baranov V.I., Telegin V.A., Kuklev S.B. Comparison of coastal currents measured by HF and X-band radars with ADCP and drifter data at the IO RAS hydrophysical test site in the Black Sea.  Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa – Current Problems in Remote Sensing of the Earth from Space. 2017. Vol. 14. No. 7. P. 250-266. (In Russian)

2. Ivonin D.V., Telegin V.À., Azarov À.I., Ermoshkin À.V., Bakhanov V.V. Possibility to measure velocity vector of surface currents by means of nautical radar with wide beamwidth antenna.  Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa – Current Problems in Remote Sensing of the Earth from Space. 2011. Vol. 8. No. 4. P. 219-227. (In Russian).

3. Ratner Yu.B., Fomin V.V., Ivanchik A.M., Ivanchik M.V. System of the wind wave operational forecast in the Black Sea marine forecasting center.  Physical Oceanography. 2017. No. 5. P. 51-59.

4. Reichert K., Hessner K.,  Nieto Borge  J.C., Dittmer J. WaMoS II: A radar based wave and current monitoring system. The Ninth International Offshore and Polar Engineering Conference, 30 May-4 June, Brest, France. 1999.

5. Bass F.G., Braude S.Ya. , Kalmykov A.I. et al. Radar Methods for the Study of Ocean Waves (Radiooceanography).  Soviet Physics Uspekhi. 1975. Vol. 18. P. 641–642.

6. Korotaev G.K., Pustovoitenko V.V., Terekhin Yu.V. Satellite oceanology: formation, development, prospects.  Ekologicheskaya bezopasnost' pribrezhnoy i shel'fovoy zon i kompleksnoye ispol'zovaniye resursov shel'fa – Environmental safety of coastal and shelf zones and integrated use of shelf resources. 2006. No. 14. P. 324-348. (In Russian).

7. Nieto Borge J.C., Rodriguez G.R., Hessner K., Gonzalez P.I. Inversion of Marine Radar Images for Surface Wave Analysis.  J. Atmos. Oceanic Technol., 2004. Vol. 21. P. 1291-1300.

8. Ivonin D.V., Chernyshov P.V., Kuklev S.B., Myslenkov S.A. Preliminary comparisons of sea current velocity vector measurements by a nautical X-band radar and moored ADCP. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa – Current Problems in Remote Sensing of the Earth from Space. 2016. Vol. 13. No. 2. P. 53-66. (In Russian)

9. Izquierdo P., Nieto Borge J.C., Guedes Soares C. et al. Comparison of wave spectra from nautical radar images and scalar buoy data.  Journal of Waterway, Port, Coastal, and Ocean Engineering. 2005. Vol. 131, No. 3.

10. Plant, W.J. and W.C. Keller, 1990: Evidence of Bragg scattering in microwave Doppler spectra of sea return.  J. Geophys. Res., Vol. 95. No. C9, P.299-310.

11. Lee P.H.Y., Barter J.H., Beach K.L., Hindman C.L, Lake B.M., Rungaldier H., Shelton J.C., Williams A.B., Yee R., Yuen H.C. X-Band microwave backscattering from ocean waves. J. Geophys. Res., 1995. Vol 100. No. C2. P. 2591-2611.

12. WaMoS II Wave and Surface Current Monitoring System Operating Manual. Version 4.0. OceanWaveS GmbH. Germany, April 2003, 146 p.

13. Yefimov V.V., Soloviev Yu.P., Khristoforov G.N. Experimental determination of the phase velocity of propagation of spectral components of sea wind waves. Izvestiya AN SSSR. Fizika atmosfery i okeana -  Bulletin of the USSR Academy of Sciences. Physics of the atmosphere and the ocean. 1972. Vol. 8, No. 4. P. 435-446. (In Russian)

14. Phillips O.M. The dispersion of short wavelets in the presence of a dominant long wave.  J. Fluid Mech. 1981. Vol. 107. P. 465-485.

15. Yefimov V.V. Dinamika volnovykh protsessov v pogranichnykh sloyakh atmosfery i okeana [Dynamics of wave processes in the boundary layers of the atmosphere and the ocean]. Kiyev. Naukova Dumka Publ. 1981. 255 p. (In Russian)

16. Stokes G.G. On the theory of oscillatory waves.  Trans. Cambridge Philos. Soc. 1849. Vol. 8. P. 197-229.

17. Lake B.M., Yuen H.C. A new model for nonlinear gravity waves. Part 1. J. Fluid Mech. 1978. Vol. 88. P. 33-62.

18. Pokazeev K.V., Zapevalov A.S. Calculation of phase velocities in the field of sea surface waves. Vestnik Moskovskogo Universitets. Seriya 3: Fizika. Astronomiya  - Bulletin of Moscow University.  Physics.Astronomy.  2019. Vol. 74, No. 4. P. 413–418. (In Russian)

19. Kudryavtsev V., Yurovskaya M., Chapron B., Collard F., Donlon C. Sun glitter imagery of ocean surface waves: Part 1. Directional spectrum retrieval and validation. J. Geophysical Research: Oceans. 2017. Vol. 122, No. 2. P. 1369-1383.

20. Yurovskaya M.V., Kudryavtsev V.N., Stanichny S.V. Reconstruction of surface wave kinematic characteristics and bathymetry from Geoton-L1 multichannel optical images from Resurs-P satellite. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa – Current Problems in Remote Sensing of the Earth from Space. 2019. Vol. 16, No. 2. P. 218–226 (In Russian)

21. Yurovskaya M., Kudryavtsev V., Chapron B., Rascle N., Collard F. Wave spectrum and surface current retrieval from airborne and satellite sun glitter imagery. Proc. IGARSS’2018, Valencia, 2018. P. 3192-3195.

22. Bakhanov V.V., Demakova A.A., Korinenko A.E., Ryabkova M.S., Titov V.I. Estimation of the Wind Wave Spectra with Centimeters-to-Meter Lengths by the Sea Surface Images. Physical Oceanography. 2018. Vol. 25, No. 3. P. 177-190.

 

For citation:

Zapevalov A.S., Shumeyko I.P. Determination of the current velocity by measurements of nautical radar.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No. 1. Available at http://jre.cplire.ru/jre/jan20/1/text.pdf. DOI  10.30898/1684-1719.2020.1.1