ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2020. № 3
Оглавление выпускаТекст статьи (pdf)
English page
DOI 10.30898/1684-1719.2020.3.1
УДК: 53.083.8 537.9
МНОГОФАКТОРНЫЙ АНАЛИЗ ЭФФЕКТИВНОСТИ ФОТОВОЛЬТАИЧЕСКОГО МАССИВА
А. В. Бланк, С. Д. Богданов, Н. А. Сухарева
Московский государственный университет имени М.В.Ломоносова, физический факультет, 119991, Москва, Ленинские горы, д.1, стр.2
Статья поступила в редакцию 19 февраля 2020 г.
Аннотация. Обсуждается отклик регулярного и распределяющего фотовольтаических массивов на действие непрерывного мощного энергонесущего пучка различного размера и позиционирования. Учтена вариация температуры сегментов массива в зависимости от интенсивности падающего излучения. Рассмотрены режимы "жесткой" и "адаптивной" термостабилизации -- в первом случае все сегменты массива поддерживаются при постоянной температуре, во втором -- выставляется ограничение по максимальной температуре поверхности, а профиль температуры поверхности в квазистационарном режиме повторяет распределение интенсивности энергонесущего пучка. Введено понятие обобщенной эффективности фотопреобразования при работе с пучком, размеры которого меньше линейных размеров массива. Представлен сравнительный анализ основных фотовольтаических характеристик полных и усеченных массивов, оптимизированных для преобразования осесимметричных пучков.
Ключевые слова: фотовольтаический массив, температурные режимы, обобщенная эффективность, регулярная и распределяющая коммутация.
Abstract. The response of the regular and distributing photovoltaic arrays to the action of a continuous powerful energy-carrying beam of various positions and sizes is discussed. The temperature variation of the segments of the array is taken into account depending on the intensity of the incident radiation. The modes of "hard" and "adaptive" thermal stabilization are considered - in the first case, all segments of the array are maintained at a constant temperature, in the second - a restriction on the maximum surface temperature is set, and the surface temperature profile in the quasi-stationary mode repeats the distribution of the energy-carrying intensity beam. The concept of generalized photoconversion efficiency is introduced when working with a beam whose dimensions are smaller than the linear dimensions of the array. A comparative analysis of the main photovoltaic characteristics of complete and truncated arrays optimized for the transformation of axisymmetric beams is presented.
Key words: photovoltaic array, temperature conditions, generalized efficiency, regular and distributive switching.
Литература
1. Ju X., Pan X., Xu C. Multi-physics effects on the performance of Dense-array Concentrator Photovoltaic System. Energy Procedia. 2019. Vol. 158. P. 388–393.
2. Abdin Z., Webb C., Gray E. Simulation of large photovoltaic arrays. Solar Energy. 2018. Vol. 161. P. 163–179.
3. Krishna G Sai, Moger Tukaram. Reconfiguration strategies for reducing partial shading effects in photovoltaic arrays: State of the art. Solar Energy. 2019. Vol. 182. P. 429–452.
4. Xinyu P., Xing J., Chao X., et al. A novel rotational symmetry (RS) connection approach for dense-array concentrator photovoltaic (DA-CPV) modules. Energy conversion and management. 2019. Vol. 181. P. 359 – 371.
5. Yousri Dalia, Allam Dalia, Eteiba Magdy B. Optimal photovoltaic array reconfiguration for alleviating the partial shading influence based on a modified harris hawks optimizer. Energy Conversion and Management. 2020. Vol. 206. P.112470.
6. Blank A., Bogdanov S., Suhareva N., et al. Simulation modeling of photovoltaic arrays. Zhurnal Radioelektroniki — Journal of Radio Electronics. 2019. Vol. 12. P. 1–26.
7. Blank A.V., Chebotareva A.B., Kost T.N., et al. Conversion characteristics of silicon photovoltaic cells for optical beaming. Photonics for Solar Energy Systems VII. 2018. Vol. 10688. P. 1–11.
8. Blank A., Bogdanov S., Suhareva N., et al. Distribution commutation of photovoltaic arrays for tasks of wireless optical energy. Zhurnal Radioelektroniki — Journal of Radio Electronics. 2019. Vol. 11. P. 1–27.
9. Kapranov V.V., Matsak I.S., Blank A.V., et al. Atmospheric turbulence effects on the performance of the laser wireless power transfer system. Free-Space Laser Communication and Atmospheric Propagation XXIX. 2017. Vol. 10096. P. 1–13.
10. Babanin E.A., Blank A.V., Kononenko V.S., et al. Chaos and order of the wave beams positional parameters at the output of long atmospheric path. 24th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2018. Vol. 10833. P. 1–9.
11. Lee Y., Park Ch., Balaji N. et al. High-efficiency silicon solar cells: A review. Israel Journal of Chemistry. 2015. Vol. 55. P. 1050–1063.
12. Blakers A. Development of the PERC solar cell. IEEE Journal of Photovoltaics. 2019. Vol. 9. P. 629–635.
13. Altermatt P.P., Xiong Zh., He Q. et al. High-performance p-type multicrystalline silicon (mc-Si): Its characterization and projected performance in PERC solar cells. Solar Energy. 2018. Vol. 175. P. 68–74.
14. Blank A., Razuvaev A., Suhareva N., et al. Quasistatic thermal and nonlinear processes of photoconversion of high-density optical radiation by multilayer structures. EPJ Web of Conferences. 2017. Vol. 161. P. 1–2.
15. Sands D. Pulsed laser heating and melting. Heat Transfer-Engineering Applications. 2011. P. 47–70.
16. El-Hameed Afaf M Abd. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites. NRIAG Journal of Astronomy and Geophysics. 2015. Vol. 4. P. 256–265.
Для цитирования:
Бланк А.В., Богданов С.Д., Сухарева Н.А. Многофакторный анализ эффективности фотовольтаического массива. Журнал радиоэлектроники [электронный журнал]. 2020. № 3. Режим доступа: http://jre.cplire.ru/jre/mar20/1/text.pdf. DOI 10.30898/1684-1719.2020.3.1