Abstract. An applicability of
spaceborne radar interferometry for the measurements of snow layer thickness
and snow water equivalent was studied. Experimental dataset in the measurements
of thickness and snow water equivalent consisted of two datasets from ALOS
PALSAR-2 observations made in snow free conditions and in the presence of snow
cover. Theoretical relations between interferometric phase difference, snow
layer thickness and snow water equivalent for a given observation geometry and
radar signal wavelength are presented. An essential feature of the experiment
was the deployment at the test field of the reference corner reflector having
stable level of radar cross section and scattered signal phase center location.
Its interferometric phase difference was used as reference in calculations of
the phase differences induced by snow cover on the test field. The deployment
of the corner reflector with 2 meters leg on the smooth surface of the test
field provided high corner signal to surrounding clutter ratio, exceeding 34
dB, and respective accurate measurements of the corner signal phase difference.
At the same time, overall accuracy is determined by signals of the test field
covered with snow layer. Direct measurements of snow parameters are: snow
thickness 20 – 30 cm, snow density 0.2 – 0.21 g/cm3. The
calculations of snow depth made using theoretical relations, interferometric
phase difference measurements, as well as direct measurements of snow layer
thickness at the test field are in good agreement.
Key words: Spaceborne
synthetic aperture radar, differential interferometry, ALOS PALSAR-2, snow
cover, snow water equivalent.
References
1.
Rees W. G. Remote sensing of snow and
ice. CRC Press, Taylor & Francis Group, 2006. 302 p.
2.
Tedesco M., Derksen C., Deems J.S.,
Foster J.L. Remote sensing of snow depth and snow water equivalent. In «Remote
Sensing of the Cryosphere» Edited by M. Tedesco. John Wiley & Sons, Ltd.,
2015. P. 73-98.
3.
Thermal Microwave Radiation:
Applications for Remote Sensing. Ed. by C. Mätzler. The Institution of
Engineering and Technology, 2006. 555 p.
4.
Kitaev L.M., Tikhonov V.V., BoyarskiiD.A., Titkova T.B., Komarova N.Yu.
Snow Cover of the East European Plain According to the Multi-Frequency Microwave
Satellite Radiometry.
Sovremannyye problemy diatantsionnogo zondirovaniya Zemli iz kosmosa -
Ñurrent problems in remore sensing of the
Earth from space.
2012, V.9, N 1, pp.249-257 (In Russian)
5.
Telegina À.À., Frolova N.L, Kitaev L.M.,
Titkova T.B.
Estimation of precision of snow storage satellite data for large watersheds of
European Russia.
Sovremannyye
problemy diatantsionnogo zondirovaniya Zemli iz kosmosa -
Ñurrent problems in remore sensing of the
Earth from space.
2014, V.
11, N 2. pp. 38-49.
(In Russian)
6.
Richards J.A. Remote Sensing with
Imaging Radar. Berlin Heidelberg, Springer-Verlag, 2009. 361 p.
7.
Zakharov A.I., Yakovlev O.I., Smirnov V.M. Sputnikovyi monitoring Zemli:
radiolokatsionnoye zondirovanie poverkhnosti. [Satellite monitoring of the
Earth: surface radar sensing]. Moscow, KRASAND Publ., 2012, 248 p. (In Russian)
8.
Shi J.C., Xiong C., Jiang L.M. Review of
snow water equivalent microwave remote sensing. Science China Earth Sciences.
2016. V. 59. ¹ 4.
pp. 731–745.
9.
Hanssen R.F. Radar Interferometry: Data
Interpretation and Error Analysis. Dordrecht, Kluwer Academic Publishers. 2001.
308 p.
10.
Gabriel A.K., Goldstein R.M., Zebker H.A.
Mapping small elevation changes over large areas—differential radar
interferometry. J. Geophys. Res. 1989. 94:9183–91
11.
Massonnet D., Rossi M., Carmona C.,
Adragna F., Peltzer G., Feigl K., Rabaute T. The displacement field of the
Landers earthquake mapped by radar interferometry. Nature. 1993. V 364. pp. 138–142.
12.
Liu L., Zhang T., Wahr J. InSAR
measurements of surface deformation over permafrost on the North Slope of
Alaska J. Geophys. Res. 2010. 115. F03023. DOI:10.1029/2009JF001547.
13.
Short N., Brisco B., Couture N.,
Pollard W., Murnaghan K., Budkewitsch, P. A comparison of TerraSAR-X,
RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost
environments, case study from Herschel Island, Canada. Remote Sensing of
Environment. 2011. V.115. ¹12. pp. 3491–3506.
14.
Zakharov A.I., Epov M.I., Mironov V.L.,
Chymitdorzhiev T.N., Bykov M.E., Seleznev V.S., Emanov A.F., Cherepenin V.A.
Earth surface subsidence in the Kuznetsk coal basin caused by manmade and
natural seismic activity according to ALOS PALSAR interferometry. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
2013. V. 6. ¹. 3. pp. 1578-1583.
15.
Chymitdorzhiev T.N., Dagurov
P.N., Zakharov A.I., Tatkov G.I., Bykov M.E., Dmitriev
A.V., Baldanov N.D., Muhorin E.A., Milheev E.U. Estimation of seasonal
deformation of marshy soil by radar interferometry and geodetic leveling
techniques.
Kriosfera Zemli -
Ñryosphere
of the Earth,
2013, V. 17, N 1, pp.80-87. (In Russian)
16.
Ng A.H.-M., Ge L., Li X. Assessments of
land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote
Sens. Environ. 2014. V. 159.
pp. 86–101.
17.
Beck I., Ludwig R., Bernier M., Strozzi
T., Boike, J. Vertical movements of frost mounds in sub-Arctic permafrost
regions analyzed using geodetic survey and satellite interferometry. Earth
Surface Dynamics. 2015. V 3. pp. 409–421.
18.
Chimitdorzhiev T.N., Dagurov P.N.,
Bykov M.E., Dmitriev A.V., Kirbizhekova I.I. Comparison of ALOS PALSAR interferometry
and field geodetic leveling for marshy soil thaw/freeze monitoring, case study
from the Baikal lake region, Russia Journal of Applied Remote Sensing. 2016.
V. 10. ¹
1. P. 016006.
19.
Strozzi T., Wegmüller U.,
Mätzler C. Mapping wet snowcovers with SAR interferometry. International
Journal of Remote Sensing. 1999. V. 20. ¹12. pp. 2395–2403.
20.
Li Z., Guo H., Li X., Wang C. SAR
Interferometry coherence analysis for snow mapping. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS’01). 2001. V. 6, pp. 2905–2907.
21.
Singh G., Venkataraman G., Rao Y. S.,
Kumar V., Snehmani, InSAR coherence measurement techniques for snow cover
mapping in Himalayan region. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS’08). 2008. V 4.
pp. IV-1077– IV-1080.
22.
Wang Y., Wang L., Li H., Yang Y., Yang
T. Assessment of snow status changes using L-HH temporal-coherence components
at Mt. Dagu, China. Remote Sensing. 2015. V. 7. ¹ 9. pp. 11602–11620.
23.
Kumar V., Venkataraman G. SAR
interferometric coherence analysis for snow cover mapping in the western
Himalayan region. International Journal of Digital Earth, 2011. V. 4. ¹ 1. pp.
78–90.
24.
Wickramanayake A., Henschel M. D., Hobbs
S., Buehler S. A., Ekman J., Lehrbass B. Seasonal variation of coherence in
SAR interferograms in Kiruna, Northern Sweden. International Journal of
Remote Sensing, 2016. V. 37. ¹ 2. pp. 370–387.
25.
Guneriussen T., Hogda K. A., Johnsen H.,
Lauknes I. InSAR for estimation of changes in snow water equivalent of dry
snow. IEEE Transactions on Geoscience and Remote Sensing, 2001. V. 39. ¹ 10.
pp. 2101–2108.
26.
Rott H., Nagler T., Scheiber R. Snow
mass retrieval by means of SAR interferometry. In 3rd FRINGE workshop.
European Space Agency: Earth Observation, 2003. Available at:
https://earth.esa.int/fringe03/proceedings/papers/46_rott.pdf.
27.
Deeb E. J., Forster R. R., Kane D. L.
Monitoring snowpack evolution using interferometric synthetic aperture radar on
the North Slope of Alaska, USA. International Journal of Remote Sensing. 2011.
V. 32. ¹ 14. pp. 3985–4003.
28.
Li S., M. Sturm. Patterns of
wind-drifted snow on the Alaskan arctic slope, detected with ERS-1
interferometric SAR. J. Glaciol. 2002. V 48. ¹. 163. pp. 495–504.
29.
Esmaeily-Gazkohani A., Granberg H.B.,
Gwyn Q.H.J. Repeat-pass cross-track interferometric SAR to measure dry snow
water equivalent and depth. Can. J. Remote Sensing. 2010. V. 36. Suppl. 2.
pp. S316–S326.
30.
Li H., Xiao P., Feng X., He G., Wang
Z. Monitoring snow depth and its change using repeat-pass interferometric SAR
in Manas River Basin. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’16).
2016. p. 4936-4939.
31.
Leinss S., Wiesmann A., Lemmetyinen J.,
Hajnsek I. Snow water equivalent of dry snow measured by differential
interferometry. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
2015. V.
8. ¹. 8. pp. 3773–3790.
32.
Zebker H., Villasenor J. Decorrelation
in interferometric radar echoes. IEEE Transactions on Geoscience and Remote
Sensing. 1992. V. 30. ¹ 5. pp. 950–959.
33.
Ferretti A., Prati C., Rocca F.
Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience
and Remote Sensing. 2001. V.
39. ¹. 1. pp. 8-20.
34.
Feoktistov A.A., Zakharov A.I., Gusev M.A., Deniso P.V.
Study of the dependence of radar remote sensing data processing results on the
processing parameters. Part 1. Key features of persistent scatterers technique.
Zhurnal Radioelektroniki - Journal of Radio Electronics,2014.
N 12. Available at http://jre.cplire.ru/jre/dec14/5/text.pdf.
35. Filatov
A.V.
Application of ALOS\PALSAR multi-temporal radar acquisitions for detection of
ground displacements under Arctic conditions.
Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 2. Available at
http://jre.cplire.ru/jre/feb16/9/text.pdf. (In Russian)
36.
Mätzler C. Microwave permittivity
of dry snow. IEEE Trans. Geosci. Remote Sens. 1996. V. 34. ¹. 2. pp.
573–581.
37. V. A. Golunov,
A. V. Kuzmin, D. P. Skulachev, G. I. Kchokchlov.
Experimentally obtained spectra of the millimeter waves' attenuation, absorption
and scattering from dry fresh snow.
Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 9. Available at
http://jre.cplire.ru/jre/sep16/4/text.pdf. (In Russian)
38. N.
A. Armand and A. I. Zakharov.
Application of Synthetic-Aperture Radars for
Measuring the Faraday Rotation Angle.
Journal of Communications Technology and Electronics,
2006, V. 51,
N 10, pp. 1141-1147. DOI:
10.1134/S1064226906100032.