"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2017

contents             full textpdf   

DETERMINATION OF SNOW COVER PARAMETERS BY MEANS OF L-BAND RADAR DIFFERENTIAL INTERFEROMETRY

 

P. N. Dagurov1, T. N. Chimitdorzhiev1, A. V. Dmitriev1, S. I. Dobrynin2, A.I. Zakharov3, A. K. Baltukhaev1, M. E. Bykov1, I. I. Kirbizhekova1

 

1 Institute of Physical Materials Science, SB RAS, 670047, Ulan-Ude, Sakhyanovoy str., 6

2Buryat institute of infocommunications (branch) SibSUTIS, 670005, Ulan-Ude, Trubacheeva str., 152

3Kotel'nikov Institute of Radio-engineering and Electronics of RAS, Fryazino Branch, 141190, Fryazino, Moscow region, Vvedensky Sq. 1

 

The paper is received on April 27, 2017

 

Abstract. An applicability of spaceborne radar interferometry for the measurements of snow layer thickness and snow water equivalent was studied. Experimental dataset in the measurements of thickness and snow water equivalent consisted of two datasets from ALOS PALSAR-2 observations made in snow free conditions and in the presence of snow cover. Theoretical relations between interferometric phase difference, snow layer thickness and snow water equivalent for a given observation geometry and radar signal wavelength are presented. An essential feature of the experiment was the deployment at the test field of the reference corner reflector having stable level of radar cross section and scattered signal phase center location. Its interferometric phase difference was used as reference in calculations of the phase differences induced by snow cover on the test field. The deployment of the corner reflector with 2 meters leg on the smooth surface of the test field provided high corner signal to surrounding clutter ratio, exceeding 34 dB, and respective accurate measurements of the corner signal phase difference. At the same time, overall accuracy is determined by signals of the test field covered with snow layer. Direct measurements of snow parameters are: snow thickness 20 – 30 cm, snow density 0.2 – 0.21 g/cm3. The calculations of snow depth made using theoretical relations, interferometric phase difference measurements, as well as direct measurements of snow layer thickness at the test field are in good agreement.

Key words: Spaceborne synthetic aperture radar, differential interferometry, ALOS PALSAR-2, snow cover, snow water equivalent.

References

1.     Rees W. G. Remote sensing of snow and ice. CRC Press, Taylor & Francis Group, 2006. 302 p.

2.     Tedesco M., Derksen C., Deems J.S., Foster J.L. Remote sensing of snow depth and snow water equivalent. In «Remote Sensing of the Cryosphere» Edited by M. Tedesco. John Wiley & Sons, Ltd., 2015. P. 73-98.

3.     Thermal Microwave Radiation: Applications for Remote Sensing. Ed. by C. Mätzler. The Institution of Engineering and Technology, 2006. 555 p.

4.     Kitaev L.M., Tikhonov V.V., BoyarskiiD.A., Titkova T.B., Komarova N.Yu. Snow Cover of the East European Plain According to the Multi-Frequency Microwave Satellite Radiometry. Sovremannyye problemy diatantsionnogo zondirovaniya Zemli iz kosmosa - Ñurrent problems in remore sensing of the Earth from space. 2012, V.9, N 1, pp.249-257 (In Russian)

5.     Telegina À.À., Frolova N.L, Kitaev L.M., Titkova T.B.  Estimation of precision of snow storage satellite data for large watersheds of European Russia. Sovremannyye problemy diatantsionnogo zondirovaniya Zemli iz kosmosa - Ñurrent problems in remore sensing of the Earth from space. 2014, V. 11, N 2. pp. 38-49. (In Russian)

6.     Richards J.A. Remote Sensing with Imaging Radar. Berlin Heidelberg, Springer-Verlag, 2009. 361 p.

7.     Zakharov A.I., Yakovlev O.I., Smirnov V.M. Sputnikovyi monitoring Zemli: radiolokatsionnoye zondirovanie poverkhnosti. [Satellite monitoring of the Earth: surface radar sensing]. Moscow, KRASAND Publ., 2012, 248 p. (In Russian)

8.     Shi J.C., Xiong C., Jiang L.M. Review of snow water equivalent microwave remote sensing. Science China Earth Sciences. 2016. V. 59. ¹ 4. pp. 731–745.

9.     Hanssen R.F. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht, Kluwer Academic Publishers. 2001. 308 p.

10.          Gabriel A.K., Goldstein R.M., Zebker H.A. Mapping small elevation changes over large areas—differential radar interferometry. J. Geophys. Res. 1989. 94:9183–91

11.          Massonnet D., Rossi M., Carmona C., Adragna F., Peltzer G., Feigl K., Rabaute T.  The displacement field of the Landers earthquake mapped by radar interferometry.  Nature. 1993. V 364. pp. 138–142.

12.          Liu L., Zhang T., Wahr J. InSAR measurements of surface deformation over permafrost on the North Slope of Alaska  J. Geophys. Res. 2010. 115. F03023. DOI:10.1029/2009JF001547.

13.          Short N., Brisco B., Couture N., Pollard W., Murnaghan K., Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sensing of Environment. 2011. V.115. ¹12. pp. 3491–3506.

14.          Zakharov A.I., Epov M.I., Mironov V.L., Chymitdorzhiev T.N., Bykov M.E., Seleznev V.S., Emanov A.F., Cherepenin V.A. Earth surface subsidence in the Kuznetsk coal basin caused by manmade and natural seismic activity according to ALOS PALSAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013. V. 6. ¹. 3. pp. 1578-1583.

15.          Chymitdorzhiev T.N., Dagurov P.N., Zakharov A.I., Tatkov G.I., Bykov M.E., Dmitriev A.V., Baldanov N.D., Muhorin E.A., Milheev E.U. Estimation of seasonal deformation of marshy soil by radar interferometry and geodetic leveling techniques. Kriosfera Zemli - Ñryosphere of the Earth, 2013, V. 17, N 1, pp.80-87. (In Russian)

16.          Ng A.H.-M., Ge L., Li X. Assessments of land subsidence in the Gippsland Basin of Australia using ALOS PALSAR data. Remote Sens. Environ. 2014. V. 159. pp. 86–101.

17.          Beck I., Ludwig R., Bernier M., Strozzi T., Boike, J. Vertical movements of frost mounds in sub-Arctic permafrost regions analyzed using geodetic survey and satellite interferometry. Earth Surface Dynamics. 2015. V 3. pp. 409–421.

18.          Chimitdorzhiev T.N., Dagurov P.N., Bykov M.E., Dmitriev A.V., Kirbizhekova I.I. Comparison of ALOS PALSAR interferometry and field geodetic leveling for marshy soil thaw/freeze monitoring, case study from the Baikal lake region, Russia Journal of Applied Remote Sensing. 2016. V. 10. ¹ 1. P. 016006.

19.          Strozzi T., Wegmüller U., Mätzler C. Mapping wet snowcovers with SAR interferometry. International Journal of Remote Sensing. 1999. V. 20. ¹12. pp. 2395–2403.

20.          Li Z., Guo H., Li X., Wang C. SAR Interferometry coherence analysis for snow mapping. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’01). 2001. V. 6, pp. 2905–2907.

21.          Singh G., Venkataraman G., Rao Y. S., Kumar V., Snehmani, InSAR coherence measurement techniques for snow cover mapping in Himalayan region. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’08). 2008. V 4. pp. IV-1077– IV-1080.

22.         Wang Y., Wang L., Li H., Yang Y., Yang T. Assessment of snow status changes using L-HH temporal-coherence components at Mt. Dagu, China.  Remote Sensing. 2015. V. 7. ¹ 9. pp. 11602–11620.

23.         Kumar V., Venkataraman G. SAR interferometric coherence analysis for snow cover mapping in the western Himalayan region. International Journal of Digital Earth, 2011. V. 4. ¹ 1. pp. 78–90.

24.         Wickramanayake A., Henschel M. D., Hobbs S., Buehler S. A., Ekman J.,  Lehrbass B. Seasonal variation of coherence in SAR interferograms in Kiruna, Northern Sweden. International Journal of Remote Sensing, 2016. V. 37. ¹ 2. pp. 370–387.

25.         Guneriussen T., Hogda K. A., Johnsen H., Lauknes I. InSAR for estimation of changes in snow water equivalent of dry snow. IEEE Transactions on Geoscience and Remote Sensing, 2001. V. 39. ¹ 10. pp. 2101–2108.

26.         Rott H., Nagler T., Scheiber R. Snow mass retrieval by means of SAR interferometry.  In 3rd FRINGE workshop. European Space Agency: Earth Observation, 2003. Available at: https://earth.esa.int/fringe03/proceedings/papers/46_rott.pdf.

27.         Deeb E. J., Forster R. R., Kane D. L. Monitoring snowpack evolution using interferometric synthetic aperture radar on the North Slope of Alaska, USA. International Journal of Remote Sensing. 2011. V. 32. ¹ 14. pp. 3985–4003.

28.         Li S., M. Sturm. Patterns of wind-drifted snow on the Alaskan arctic slope, detected with ERS-1 interferometric SAR.  J. Glaciol. 2002. V 48. ¹. 163. pp. 495–504.

29.         Esmaeily-Gazkohani A., Granberg H.B., Gwyn Q.H.J. Repeat-pass cross-track interferometric SAR to measure dry snow water equivalent and depth.  Can. J. Remote Sensing. 2010. V. 36. Suppl. 2. pp. S316–S326.

30.         Li H.,  Xiao P.,  Feng X., He G.,  Wang Z. Monitoring snow depth and its change using repeat-pass interferometric SAR in Manas River Basin. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS’16). 2016. p. 4936-4939.

31.         Leinss S., Wiesmann A., Lemmetyinen J., Hajnsek I. Snow water equivalent of dry snow measured by differential interferometry.  IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2015. V. 8. ¹. 8. pp. 3773–3790.

32.         Zebker H., Villasenor J. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing. 1992. V. 30. ¹ 5. pp. 950–959.

33.         Ferretti A., Prati C., Rocca F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing. 2001. V. 39. ¹. 1. pp. 8-20.

34.         Feoktistov A.A., Zakharov A.I., Gusev M.A., Deniso P.V. Study of the dependence of radar remote sensing data processing results on the processing parameters. Part 1. Key features of persistent scatterers technique. Zhurnal Radioelektroniki - Journal of Radio Electronics,2014. N 12. Available at http://jre.cplire.ru/jre/dec14/5/text.pdf.

35.        Filatov A.V. Application of ALOS\PALSAR multi-temporal radar acquisitions for detection of ground displacements under Arctic conditions. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 2. Available at http://jre.cplire.ru/jre/feb16/9/text.pdf. (In Russian)

36.         Mätzler C. Microwave permittivity of dry snow.  IEEE Trans. Geosci. Remote Sens. 1996. V. 34. ¹. 2. pp. 573–581.

37.   V. A. Golunov, A. V. Kuzmin, D. P. Skulachev, G. I. Kchokchlov. Experimentally obtained spectra of the millimeter waves' attenuation, absorption and scattering from dry fresh snow. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2016, No. 9. Available at http://jre.cplire.ru/jre/sep16/4/text.pdf. (In Russian)

38.  N. A. Armand and A. I. Zakharov. Application of Synthetic-Aperture Radars for Measuring the Faraday Rotation Angle. Journal of Communications Technology and Electronics, 2006,  V. 51,  N 10, pp. 1141-1147.  DOI: 10.1134/S1064226906100032.  

 

For citation:

P. N. Dagurov, T. N. Chimitdorzhiev, A. V. Dmitriev, S. I. Dobrynin, A.I. Zakharov, A. K. Baltukhaev, M. E. Bykov, I. I. Kirbizhekova. Determination of snow cover parameters by means of L-band radar differential interferometry. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 5. Available at http://jre.cplire.ru/jre/may17/1/text.pdf. (In Russian)