ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2021. № 5
Оглавление выпускаТекст статьи (pdf)
DOI https://doi.org/10.30898/1684-1719.2021.5.4
УДК 21.317.445
Практика и перспективы применения сверхчувствительных магнитометров в биомедицинских исследованиях
Ю. В. Масленников1,2,3
1 Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В.Пушкова РАН, 108840, Москва, Троицк, Калужское шоссе, 4
2 Институт радиотехники и электроники им. В.А.Котельникова РАН, 125009, Москва, ул. Моховая, 11-7
3 ООО «НПО КРИОТОН», 108840, Москва, Троицк, ул. Лесная, 4Б
Статья поступила в редакцию 12 мая 2021 г.
Аннотация. Исследования и разработки по использованию магнитометров и магнитных методов измерений в медицине ведутся уже более 50 лет. Основная сложность исследования магнитных сигналов, генерируемых живыми организмами, состоит в том, что их амплитуды очень малы. Так, амплитуда R-пика магнитокардиограммы, регистрируемой бесконтактно над грудной клеткой человека, составляет всего около 50-100 пикоТесла, что примерно в миллион раз меньше величины магнитного поля Земли. Многолетняя практика показала, что для регистрации генерируемых в организме человека биомагнитных сигналов с необходимым отношением «сигнал-шум», магнитометры должны обладать уровнями собственной чувствительности порядка нескольких фемтоТесла в единичной полосе частот. На сегодняшний день подобные значения могут обеспечить лишь магнитометры на основе СКВИДов (СКВИД – сверхпроводниковый квантовый интерференционный датчик) и квантовые магнитометры с оптической накачкой (КМОН).
Настоящая статья не является детальным обзором медицинских приборов на основе СКВИД-датчиков и КМОН, и не содержит подробного описания физических принципов, на которых основано их функционирование. Об этом читатели могут прочитать в источниках, ссылки на которые приведены в тексте. В обзоре обозначены значимые с точки зрения автора направления использования подобной магнитометрической аппаратуры и методов магнитных измерений в клинической практике, приведены примеры уже существующих технических решений, применяемых в биомедицинских исследованиях, и отмечены возможные пути их дальнейшего развития.
Ключевые слова: биомагнетизм, биомедицина, биомедицинские исследования, ПТ-СКВИД, магнитометры на основе сквидов, квантовые магнитометры с оптической накачкой, магнитные наномаркеры, магнитные наночастицы.
Abstract. There are a large number of sensors for measuring the magnetic field of biological objects. They are characterized by the type of the measured physical parameter (magnetic field strength, magnetic flux, etc.), the level of intrinsic sensitivity, and the frequency range of the recorded signals. The long-term practice of studying biomagnetic signals shows that only SQUID-based magnetometers and optically pumped magnetometers have sensitivity levels sufficient for recording biomagnetic signals with the required signal-to-noise ratio. This chapter reflects the main directions of using such magnetometers and methods of magnetic measurements in biomedical research, gives examples of existing technical solutions, and shows possible ways of their further development.
Key-words: biomagnetism, biomedicine, biomedical investigations, dc-SQUID, dc-SQUID-based magnetometers, quantum optically pumped magnetometers, magnetic nanomarkers, magnetic nanoparticles.
Литература
1. Goldberger A.L., Goldberger Z.D., Shvilkin A. Goldberger's Clinical Electrocardiography: A Simplified Approach 9th Edition. Elsevier. 2017. 388 р.
2. Niedermeyer E., da Silva F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. 2004. 1266 р.
3. Malmivuo J., Plonsy R. Bioelectromagnetism. New York, Oxford: Oxford University Press. 1995. 471 р.
4. Andrä W., NowakH. Magnetism in Medicine. Weinheim: Wiley-VCH. 2007. 655 р.
5. Clarke J., Braginski A.I. SQUID Handbook. Vol I. Berlin: Wiley-VCH 2006. Vol.II. Weinheim: Wiley-VCH. 2004. 634 р.
6. Weinstock H. SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, Series E: Applied Sciences. 1995. Vol. 329. 703 p.
7. Hornak J.P. The Basics of MRI. cis.rit.edu: Rochester Institute of Technology. 1996-1999. URL: https://www.cis.rit.edu/htbooks/mri/
8. Lauterbur P.C. All science is interdisciplinary — from magnetic moments to molecules to men. Les Prix Nobel, The Nobel Prizes 2003 Nobel Foundation. 2004. P.245–251.
9. Mansfield P. Snap-shot MRI. Les Prix Nobel, The Nobel Prizes 2003 Nobel Foundation. 2004. P.266–283.
10. Murzin D., Mapps D.J., Levada K., Belyaev V., Omelyanchik A., Panina L., Rodionova V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors. 2020. Vol.20. Р.1569. https://doi.org/10.3390/s20061569
11. Sheng D., Li S., Dural N., Romalis M.V. Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells. Phys. Rev. Lett. 2013. Vol.110. P.160802. http://dx.doi.org/10.1103/PhysRevLett.110.160802
12. Faley M.I., Poppe U., Dunin-Borkowski R.E., Schiek M., Boers F., Chocholacs H., Dammers J., Eich E., Shah N.J., Ermakov A.B., Slobodchikov V.Yu., Maslennikov Yu.V., Koshelets V.P. High-Tc DC SQUIDs for Magnetoencephalography. IEEE Trans. on Appl. Supercond. 2013. Vol.23. No.3. P.1600705. http://dx.doi.org/10.1109/TASC.2012.2229094
13. Faley M.I., Dammers J., Maslennikov Y.V., Schneiderman J.F., Winkler D., Koshelets V.P., Shah N.J., Dunin-Borkowski R.E. High-Tc SQUID biomagnetometers. Supercond. Sci. Technol. 2017. Vol.30. P.083001. https://doi.org/10.1088/1361-6668/aa73ad
14. Allred J., Lyman R., Kornack T. and Romalis M. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002. Vol.89. P.130801. https://doi.org/10.1103/PhysRevLett.89.130801
15. Balabas M.V., Karaulanov T., Ledbetter M.P., Budker D. Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time. Phys. Rev. Lett. 2010. Vol.105. P.070801. https://doi.org/10.1103/PhysRevLett.105.070801
16. Vrba J. Multichannel SQUID biomagnetic systems. In: Weinstock H., editor. Applications of Superconductivity. Dordrecht: Kluwer-Academic. 2000. P.61–138. http://dx.doi.org/10.1007/978-94-017-0752-7_2
17. Vrba J., Robinson S.E. Signal processing in magnetoencephalography. Methods. 2001. Vol.25. No.2. P.249–271. http://dx.doi.org/10.1006/meth.2001.1238
18. https://megin.fi. MEGIN OY. Date of access: 03.05.2021. URL: https://megin.fi/triux-neo/
19. https://www.ctf.com. CTF MEG International Services LP. Date of access: 03.05.2021. URL: https://www.ctf.com/products
20. http://megmoscow.com. The Center for Neurocognitive Research MSUPE. Date of access: 03.05.2021. URL: http://megmoscow.ru/resources/access/equipment/HardwareTechnical.pdf
21. https://www.compumedics.com.au/en. Compumedics Limited. Date of access: 03.05.2021. URL: https://www.compumedics.com.au/en/products/orionlifespanmeg/
22. http://quspin.com. QuSpin, Inc. Date of access: 03.05.2021. URL: http://quspin.com/products-qzfm/zero-field-magnetometer-description/
23. Boto E., Meyer S.S., Shah V., Alem O., Knappe S., Kruger P., Fromhold T.M., Lime M., Glovera P.M., Morrisa P.G., Bowtella R., Barnes G.R., Brookes M.J. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage. 2017. Vol.149. P.404–414. https://doi.org/10.1016/j.neuroimage.2017.01.034
24. Boto E., Holmes N., Leggett J., Roberts G., Shah V., Meyer S.S., Muñoz L.D., Mullinger K.J., Tierney T.M., Bestmann S., Barnes G.R., Bowtell R., Brookes M.J. Moving magnetoencephalography towards real-world applications with a wearable system. Nature. 2018. Vol.555 (7698). P.657–761. https://doi.org/10.1038/nature26147
25. Boto E., Seedat Z.A., Holmes N., Leggett J., Hill R.M., Roberts G., Shah V., Fromhold T.M., Mullinger K.J., Tierney T.M., Barnes G.R., Bowtell R., Brookes M.J. Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. NeuroImage. 2019. Vol.201. P.116099. https://doi.org/10.1016/j.neuroimage.2019.116099
26. Maslennikov Yu.V. Magnetocardiographic diagnostic complexes based on the MAG_SKAN SQUIDs. J. Commun. Technol. Electron. 2011. Vol.56. No.8. P.991–999. https://doi.org/10.1134/S1064226911050093
27. Primin M.A., Nedaivoda I.V., Maslennikov Yu.V., Gulyaev Yu.V. Software for the Magnetocardiographic Complex for the Early Diagnostics and Monitoring of Heart Diseases. J. Commun. Technol. Electron. 2010. Vol.55. No.10. P.1169–1186. https://doi.org/10.1134/S1064226910100116
28. Inaba T., Nakazawa Y., Yoshida K., Kato Y., Hattori A., Kimura T., Hoshi T., Ishizu T., Seo Y., Sato A., Sekiguchi Y., Nogami A., Watanabe S., Horigome H., Kawakami Y., Aonuma K. Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital. Superconductor Science and Technology. 2017. Vol.30. No.11. P.114003. https://doi.org/10.1088/1361-6668/aa8c26
29. Budker D., Romanlis M. Optical magnetometry. Nat. Phys. 2007. Vol.3. P.227–234. https://doi.org/10.1038/nphys566
30. Bison G., Wynands R., Weis A. Dynamical mapping of the human cardiomagnetic field with a room-temperature laser-optical sensor. Optics Express. 2003. Vol.11. No.8. P.904–909. https://doi.org/10.1364/OE.11.000904
31. Bison G., Castagna N., Hofer A., Knowles P., Schenker J-L., Kasprzak M., Saudan H., Weis A. A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 2009. Vol.95. No.17. P.173701. https://doi.org/10.1063/1.3255041
32. Kim Y.J., Savukov I., Newman S. Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer. Appl. Phys. Lett. 2019. Vol.114. P.143702. https://doi.org/10.1063/1.5094339
33. Wyllie R., Kauer M., Wakai R.T., Walker T.G. Optical magnetometer array for fetal magnetocardiography. Optics Letters. 2012. Vol.37. No.12. P.2247–2249. https://doi.org/10.1364/OL.37.002247
34. Alem O., Sander T.H., Mhaskar R., LeBlanc J., Eswaran H., Steinhoff U., Okada Y., Kitching J., Trahms L., Knappe S. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 2015. Vol.60. P.4797–4811. https://doi.org/10.1088/0031-9155/60/12/4797
35. Wiesing U. Theranostics: is it really a revolution? Evaluating a new term in medicine. Medicine, Health Care and Philosophy. 2019. Vol.22. No.4. P.593–597. https://doi.org/10.1007/s11019-019-09898-3
36. Jhawat V., Gulia M., Gupta S., Maddiboyina B., Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. Journal of Controlled Release. 2020. Vol.327. P.500–511. https://doi.org/10.1016/j.jconrel.2020.08.039
37. Ling D., Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2012. Vol.9. No. 9‐10. P.1450–1466. https://doi.org/10.1002/smll.201202111
38. Jain T.K., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular pharmaceutics. 2008. Vol.5. No.2. P.316–327. https://doi.org/10.1021/mp7001285
39. Dormann J.L., Fiorani D., Tronc E. Magnetic relaxation in fine-particle systems. Advances in Chemical Physics. 1997. Vol.98. P.283–494. https://doi.org/10.1002/9780470141571.ch4.
40. Coffey W.T., Cregg P.J., Kalmykov Y.P. On the theory of Debye and Néel relaxation of single domain ferromagnetic particles. Advances in chemical physics. 1993. Vol.83. P.263–464. https://doi.org/10.1002/9780470141410.ch5/summary.
41. Mahdavi M., Ahmad M.B., Haron M.J., Namvar F., Nadi B., Ab Rahman M.Z., Amin J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013. Vol.18. No.7. P.7533–7548. https://doi.org/10.3390/molecules18077533
42. Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005. Vol.26. No.18. P.3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
43. Wu K., Su D., Saha R., Liu J., Chugh V.K., Wang J-P. Magnetic Particle Spectroscopy: A Short Review of Applications using Magnetic Nanoparticles. ACS Appl.Nano Mater. 2020. Vol.3. P.4972–4989. https://doi.org/10.1021/acsanm.0c00890
44. Jordan A., Scholz R., Wust P., Fakhling H. and Felix R. Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles. J. Magn. Magn. Mater. 1999. Vol.201. P.413–419. PII: S 0304-8853 (99) 00088-8.
45. Enpuku K., Tsujita Y., Nakamura K., Sasayama T. and Yoshida T. Biosensing utilizing magnetic markers and superconducting quantum interference devices. Supercond. Sci. Technol. 2017. Vol.30. P.053002. https://doi.org/10.1088/1361-6668/aa5fce
46. Voitovych I.D., Primin M.A., Sosnytskyy V.N. Application of SQUIDs for registration of biomagnetic signals. Low Temp. Phys. 2012. Vol.38. No.4. P.311–320. https://doi.org/10.1063/1.3699954
47. Primin M.A., Nedayvoda I.V. Non-contact analysis of magnetic fields of biological objects: algorithmms for data recording and processing. Cybernetics and Systems Analysis. 2020. Vol.56. No.5. P.848-862. https://doi.org/10.1007/s10559-020-00305-x.
48. Todor I.N., Lukianova N.Yu., Primin M.А., Nedayvoda I.V., Chekhun V.F. Biomagnetism of tumor in rats with Guerin’s carcinoma after njection of ferromagnetic nanocomposite (Ferroplat): contactless measurement. Exp. Oncol. 2020. Vol.42. No.3. P.204–207. https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-3.14918
49. Lange L., Kötitz R., Haller A., Trahms L., Semmler W., Weitschies W. Magnetorelaxometry ‒ a new binding specific detection method based on magnetic nanoparticles. J. Magn. Magn. Mater. 2002. Vol.252. P.381-383.
http://dx.doi.org/10.1016/S0304-8853(02)00657-1
50. Flynn E.R., Bryant H.C. A biomagnetic system for in vivo cancer imaging. Phys. Med. Biol. 2005. Vol.50. No.6. P.1273–1293. https://doi.org/10.1088/0031-9155/50/6/016
51. Wiekhorst F., Steinhoff U., Eberbeck D., Trahms L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res. 2012. Vol.29. P.1189-1202. https://doi.org/10.1007/s11095-011-0630-3
52. Adolphi N.L., Butler K.S., Lovato D.M., Tessier T.E., Trujillo J.E., Hathaway H.J., Fegan D.L., Monson T.C., Stevens T.E., Huber D.L., Ramu J., Milne M.L., Altobelli S.A., Bryant H.C., Larson R.S., Flynn E.R. Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol. Imaging. 2012. Vol.7. P.308–319. https://doi.org/10.1002/cmmi.499
53. Johnson C., Adolphi N.L., Butler K.L., Lavato D.M., Larson R., Schwindt P., Flynn E.R. Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells. J. Magn. Magn. Mater. 2012. Vol.24. P.2613–2619. http://dx.doi.org/10.1016/j.jmmm.2012.03.015
54. Haacke E.M., Brown R.F., Thompson M., Venkatesan R. Magnetic resonance imaging: Physical principles and sequence design. New York: J. Wiley & Sons. 1999. 973 p.
55. Seton H.C., Bussell D.M., Hutchison J.M.S., Lurie D.J. Use of dc-SQUID receiver preamplifier in a low field MRI system. IEEE. Trans. on Appl. Supercond. 1995. Vol.5. No.2. P.3218–3221. https://doi.org/10.1109/77.403276
56. Seton H.C., Bussel D.M., Hutchison J.M.S. A tuned SQUID amplifier for MRI based on a DOIT flux locked loop. IEEE Trans. on Appl. Supercond. 1997. Vol.7. P.3213–3216. https://doi.org/10.1109/77.622015
57. Schlenga K., McDermott R., Clarke J., de Souza R.E., Wong-Foy A., Pines A. Low-field magnetic resonance imaging with a high-Tc superconducting quantum interference device. Appl. Phys. Lett. 1999. Vol.75. P.3695–3697. https://doi.org/10.1063/1.125432
58. Mößle M., Myers W.R., Lee S-K., Kelso N., Hatridge M., Pines A. and Clarke J. SQUID-detected in vivo MRI at microtesla magnetic fields. IEEE Trans. on Appl. Supercond. 2005. Vol.15. P.757–760. http://dx.doi.org/10.1109/TASC.2005.850043
59. Volegov P., Matlachov A.N., Espy M.A., George J.S., Kraus R.H. Simultaneous Magnetoencephalography and SQUID Detected Nuclear MR in Microtesla Magnetic Fields. Magnetic Resonance in Medicine. 2004. Vol.52. P.467–470. https://doi.org/10.1002/mrm.20193
60. Matlachov A.N., Volegov P.L., Espy M.A., Stolz R., Fritzsch L., Zakosarenko V., Meyer H-G., Kraus R.H. Instrumentation for Simultaneous Detection of Low Field NMR and Biomagnetic Signals. IEEE Trans. on Appl. Supercond. 2005. Vol.15. No.2. P.676-679. https://doi.org/10.1109/TASC.2005.849997
61. Magnelind P.E., Gomez J.J, Matlashov A.N., Owens T., Sandin J.H, Volegov P.L., Espy M.A. Co-Registration of MEG and ULF MRI using a 7 channel low-Tc SQUID system. IEEE Trans. on Appl. Supercond. 2011. Vol.21. No.3. P.456-460. https://doi.org/10.1109/TASC.2010.2088353
62. Maslennikov Yu.V., Primin M.A., Slobodchikov V.Yu., Khanin V.V., Nedayvoda I.V., Krymov V.A., Okunev A.V., Moiseenko E.A., Beljaev A.V, Rybkin V.S., Tolcheev A.V., Gapelyuk A.V. The DC-SQUID-based magnetocardiographic s.ystems for clinical use. Physics Procedia. 2012. Vol.36. P.88–93. https://doi.org/10.1016/j.phpro.2012.06.218
63. Maslennikov Yu.V., Slobodchikov V.Yu., Krymov V.A., Sukhodrovsky A.D., Gulyaev Yu.V. Magnetometric Systems and Precise Magnetic Measurements for Biomedical Applications. Bulletin of the Russian Academy of Sciences: Physics. 2020. Vol.84. No.11. P.1354–1358. https://doi.org/10.3103/S1062873820110180
Для цитирования:
Масленников Ю.В. Практика и перспективы применения сверхчувствительных магнитометров в биомедицинских исследованиях. Журнал радиоэлектроники [электронный журнал]. 2021. №5. https://doi.org/10.30898/1684-1719.2021.5.4