ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ. ISSN 1684-1719. 2021. № 5
Оглавление выпуска

Текст статьи (pdf)

English page

 

DOI https://doi.org/10.30898/1684-1719.2021.5.4

УДК 21.317.445

 

Практика и перспективы применения сверхчувствительных магнитометров в биомедицинских исследованиях

 

Ю. В. Масленников1,2,3

1 Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В.Пушкова РАН, 108840, Москва, Троицк, Калужское шоссе, 4

2 Институт радиотехники и электроники им. В.А.Котельникова РАН, 125009, Москва, ул. Моховая, 11-7

3 ООО «НПО КРИОТОН», 108840, Москва, Троицк, ул. Лесная, 4Б

 

Статья поступила в редакцию 12 мая 2021 г.

 

Аннотация. Исследования и разработки по использованию магнитометров и магнитных методов измерений в медицине ведутся уже более 50 лет. Основная сложность исследования магнитных сигналов, генерируемых живыми организмами, состоит в том, что их амплитуды очень малы. Так, амплитуда R-пика магнитокардиограммы, регистрируемой бесконтактно над грудной клеткой человека, составляет всего около 50-100 пикоТесла, что примерно в миллион раз меньше величины магнитного поля Земли. Многолетняя практика показала, что для регистрации генерируемых в организме человека биомагнитных сигналов с необходимым отношением «сигнал-шум», магнитометры должны обладать уровнями собственной чувствительности порядка нескольких фемтоТесла в единичной полосе частот. На сегодняшний день подобные значения могут обеспечить лишь магнитометры на основе СКВИДов (СКВИД – сверхпроводниковый квантовый интерференционный датчик) и квантовые магнитометры с оптической накачкой (КМОН).

Настоящая статья не является детальным обзором медицинских приборов на основе СКВИД-датчиков и КМОН, и не содержит подробного описания физических принципов, на которых основано их функционирование. Об этом читатели могут прочитать в источниках, ссылки на которые приведены в тексте. В обзоре обозначены значимые с точки зрения автора направления использования подобной магнитометрической аппаратуры и методов магнитных измерений в клинической практике, приведены примеры уже существующих технических решений, применяемых в биомедицинских исследованиях, и отмечены возможные пути их дальнейшего развития.

Ключевые слова: биомагнетизм, биомедицина, биомедицинские исследования, ПТ-СКВИД, магнитометры на основе сквидов, квантовые магнитометры с оптической накачкой, магнитные наномаркеры, магнитные наночастицы.

Abstract. There are a large number of sensors for measuring the magnetic field of biological objects. They are characterized by the type of the measured physical parameter (magnetic field strength, magnetic flux, etc.), the level of intrinsic sensitivity, and the frequency range of the recorded signals. The long-term practice of studying biomagnetic signals shows that only SQUID-based magnetometers and optically pumped magnetometers have sensitivity levels sufficient for recording biomagnetic signals with the required signal-to-noise ratio. This chapter reflects the main directions of using such magnetometers and methods of magnetic measurements in biomedical research, gives examples of existing technical solutions, and shows possible ways of their further development.

Key-words: biomagnetism, biomedicine, biomedical investigations, dc-SQUID, dc-SQUID-based magnetometers, quantum optically pumped magnetometers, magnetic nanomarkers, magnetic nanoparticles.

Литература

1.   Goldberger A.L., Goldberger Z.D., Shvilkin A. Goldberger's Clinical Electrocardiography: A Simplified Approach 9th Edition. Elsevier. 2017. 388 р.

2.       Niedermeyer E., da Silva F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. 2004. 1266 р.

3.       Malmivuo J., Plonsy R. Bioelectromagnetism. New York, Oxford: Oxford University Press. 1995. 471 р.

4.       Andrä W., NowakH. Magnetism in Medicine. Weinheim: Wiley-VCH. 2007. 655 р.

5.       Clarke J., Braginski A.I. SQUID Handbook. Vol I. Berlin: Wiley-VCH 2006.  Vol.II. Weinheim: Wiley-VCH. 2004. 634 р.

6.       Weinstock H. SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, Series E: Applied Sciences. 1995. Vol. 329. 703 p.

7.       Hornak J.P. The Basics of MRI. cis.rit.edu: Rochester Institute of Technology. 1996-1999. URL: https://www.cis.rit.edu/htbooks/mri/  

8.       Lauterbur P.C. All science is interdisciplinary — from magnetic moments to molecules to men. Les Prix Nobel, The Nobel Prizes 2003 Nobel Foundation. 2004. P.245–251.

9.       Mansfield P. Snap-shot MRI. Les Prix Nobel, The Nobel Prizes 2003 Nobel Foundation. 2004. P.266–283.

10.  Murzin D., Mapps D.J., Levada K., Belyaev V., Omelyanchik A., Panina L., Rodionova V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors. 2020. Vol.20. Р.1569. https://doi.org/10.3390/s20061569

11.  Sheng D., Li S., Dural N., Romalis M.V. Subfemtotesla Scalar Atomic Magnetometry Using Multipass Cells. Phys. Rev. Lett. 2013. Vol.110. P.160802. http://dx.doi.org/10.1103/PhysRevLett.110.160802

12.  Faley M.I., Poppe U., Dunin-Borkowski R.E., Schiek M., Boers F., Chocholacs H., Dammers J., Eich E., Shah N.J., Ermakov A.B., Slobodchikov V.Yu., Maslennikov Yu.V., Koshelets V.P. High-Tc DC SQUIDs for Magnetoencephalography. IEEE Trans. on Appl. Supercond. 2013. Vol.23. No.3. P.1600705. http://dx.doi.org/10.1109/TASC.2012.2229094

13.  Faley M.I., Dammers J., Maslennikov Y.V., Schneiderman J.F., Winkler D., Koshelets V.P., Shah N.J., Dunin-Borkowski R.E. High-Tc SQUID biomagnetometers. Supercond. Sci. Technol. 2017. Vol.30. P.083001. https://doi.org/10.1088/1361-6668/aa73ad

14.  Allred J., Lyman R., Kornack T. and Romalis M. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 2002. Vol.89. P.130801. https://doi.org/10.1103/PhysRevLett.89.130801

15.  Balabas M.V., Karaulanov T., Ledbetter M.P., Budker D. Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time. Phys. Rev. Lett. 2010. Vol.105. P.070801. https://doi.org/10.1103/PhysRevLett.105.070801

16.  Vrba J. Multichannel SQUID biomagnetic systems. In: Weinstock H., editor. Applications of Superconductivity. Dordrecht: Kluwer-Academic. 2000. P.61–138. http://dx.doi.org/10.1007/978-94-017-0752-7_2

17.  Vrba J., Robinson S.E. Signal processing in magnetoencephalography. Methods. 2001. Vol.25. No.2. P.249–271. http://dx.doi.org/10.1006/meth.2001.1238

18.  https://megin.fi. MEGIN OY. Date of access: 03.05.2021. URL: https://megin.fi/triux-neo/

19.  https://www.ctf.com. CTF MEG International Services LP.  Date of access: 03.05.2021. URL: https://www.ctf.com/products

20.  http://megmoscow.com. The Center for Neurocognitive Research MSUPE. Date of access: 03.05.2021. URL: http://megmoscow.ru/resources/access/equipment/HardwareTechnical.pdf

21.  https://www.compumedics.com.au/en. Compumedics Limited. Date of access: 03.05.2021. URL: https://www.compumedics.com.au/en/products/orionlifespanmeg/

22.  http://quspin.com. QuSpin, Inc. Date of access: 03.05.2021. URL: http://quspin.com/products-qzfm/zero-field-magnetometer-description/

23.  Boto E., Meyer S.S., Shah V., Alem O., Knappe S., Kruger P., Fromhold T.M., Lime M., Glovera P.M., Morrisa P.G., Bowtella R., Barnes G.R., Brookes M.J. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage. 2017. Vol.149. P.404–414. https://doi.org/10.1016/j.neuroimage.2017.01.034  

24.  Boto E., Holmes N., Leggett J., Roberts G., Shah V., Meyer S.S., Muñoz L.D., Mullinger K.J., Tierney T.M., Bestmann S., Barnes G.R., Bowtell R., Brookes M.J. Moving magnetoencephalography towards real-world applications with a wearable system. Nature. 2018. Vol.555 (7698). P.657–761. https://doi.org/10.1038/nature26147

25. Boto E., Seedat Z.A., Holmes N., Leggett J., Hill R.M., Roberts G., Shah V., Fromhold T.M., Mullinger K.J., Tierney T.M., Barnes G.R., Bowtell R., Brookes M.J. Wearable neuroimaging: combining and contrasting magnetoencephalography and electroencephalography. NeuroImage. 2019. Vol.201. P.116099. https://doi.org/10.1016/j.neuroimage.2019.116099

26.  Maslennikov Yu.V. Magnetocardiographic diagnostic complexes based on the MAG_SKAN SQUIDs. J. Commun. Technol. Electron. 2011. Vol.56. No.8. P.991–999. https://doi.org/10.1134/S1064226911050093

27.  Primin M.A., Nedaivoda I.V., Maslennikov Yu.V., Gulyaev Yu.V. Software for the Magnetocardiographic Complex for the Early Diagnostics and Monitoring of Heart Diseases. J. Commun. Technol. Electron. 2010. Vol.55. No.10. P.1169–1186. https://doi.org/10.1134/S1064226910100116

28.    Inaba T., Nakazawa Y.,  Yoshida K., Kato Y.,  Hattori A.,  Kimura T.,  Hoshi T., Ishizu T., Seo Y., Sato A., Sekiguchi Y.,  Nogami A., Watanabe S., Horigome H.,  Kawakami Y., Aonuma K.  Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital. Superconductor Science and Technology. 2017. Vol.30. No.11. P.114003. https://doi.org/10.1088/1361-6668/aa8c26

29.  Budker D., Romanlis M. Optical magnetometry. Nat. Phys. 2007. Vol.3. P.227–234. https://doi.org/10.1038/nphys566  

30.  Bison G., Wynands R., Weis A. Dynamical mapping of the human cardiomagnetic field with a room-temperature laser-optical sensor. Optics Express. 2003. Vol.11. No.8. P.904–909. https://doi.org/10.1364/OE.11.000904

31.  Bison G., Castagna N., Hofer A., Knowles P., Schenker J-L., Kasprzak M., Saudan H., Weis A. A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 2009. Vol.95. No.17. P.173701. https://doi.org/10.1063/1.3255041

32.  Kim Y.J., Savukov I., Newman S. Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer. Appl. Phys. Lett. 2019. Vol.114. P.143702. https://doi.org/10.1063/1.5094339

33.  Wyllie R., Kauer M., Wakai R.T., Walker T.G. Optical magnetometer array for fetal magnetocardiography. Optics Letters. 2012. Vol.37. No.12. P.2247–2249. https://doi.org/10.1364/OL.37.002247

34.  Alem O., Sander T.H., Mhaskar R., LeBlanc J., Eswaran H., Steinhoff U., Okada Y., Kitching J., Trahms L., Knappe S. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 2015. Vol.60. P.4797–4811. https://doi.org/10.1088/0031-9155/60/12/4797

35.    Wiesing U.  Theranostics: is it really a revolution? Evaluating a new term in medicine. Medicine, Health Care and Philosophy.  2019. Vol.22. No.4. P.593–597. https://doi.org/10.1007/s11019-019-09898-3

36.    Jhawat V., Gulia M., Gupta S., Maddiboyina B., Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. Journal of Controlled Release. 2020. Vol.327. P.500–511. https://doi.org/10.1016/j.jconrel.2020.08.039

37.  Ling D., Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2012. Vol.9. No. 910. P.1450–1466. https://doi.org/10.1002/smll.201202111

38.  Jain T.K.,  Reddy M.K.,  Morales M.A.,  Leslie-Pelecky D.L.,  Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular pharmaceutics. 2008. Vol.5. No.2. P.316–327. https://doi.org/10.1021/mp7001285

39.  Dormann J.L., Fiorani D., Tronc E. Magnetic relaxation in fine-particle systems. Advances in Chemical Physics. 1997. Vol.98. P.283–494.  https://doi.org/10.1002/9780470141571.ch4.

40.  Coffey W.T., Cregg P.J., Kalmykov Y.P. On the theory of Debye and Néel relaxation of single domain ferromagnetic particles. Advances in chemical physics. 1993. Vol.83. P.263–464. https://doi.org/10.1002/9780470141410.ch5/summary.

41.  Mahdavi M., Ahmad M.B., Haron M.J., Namvar F., Nadi B., Ab Rahman M.Z., Amin J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013. Vol.18. No.7. P.7533–7548. https://doi.org/10.3390/molecules18077533

42.   Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005. Vol.26. No.18. P.3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

43.   Wu K., Su D., Saha R., Liu J., Chugh V.K., Wang J-P.  Magnetic Particle Spectroscopy: A Short Review of Applications using Magnetic Nanoparticles. ACS Appl.Nano Mater. 2020. Vol.3. P.4972–4989. https://doi.org/10.1021/acsanm.0c00890

44.  Jordan A., Scholz R., Wust P., Fakhling H. and Felix R. Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles. J. Magn. Magn. Mater. 1999. Vol.201. P.413–419. PII: S 0304-8853 (99) 00088-8.

45.  Enpuku K., Tsujita Y., Nakamura K., Sasayama T. and Yoshida T. Biosensing utilizing magnetic markers and superconducting quantum interference devices. Supercond. Sci. Technol. 2017. Vol.30. P.053002. https://doi.org/10.1088/1361-6668/aa5fce

46.  Voitovych I.D., Primin M.A., Sosnytskyy V.N. Application of SQUIDs for registration of biomagnetic signals. Low Temp. Phys. 2012. Vol.38. No.4. P.311–320. https://doi.org/10.1063/1.3699954

47.  Primin M.A., Nedayvoda I.V. Non-contact analysis of magnetic fields of biological objects: algorithmms for data recording and processing. Cybernetics and Systems Analysis. 2020. Vol.56. No.5. P.848-862. https://doi.org/10.1007/s10559-020-00305-x.

48.  Todor I.N., Lukianova N.Yu.,  Primin M.А., Nedayvoda I.V., Chekhun V.F. Biomagnetism of tumor in rats with Guerin’s carcinoma after njection of ferromagnetic nanocomposite (Ferroplat): contactless measurement. Exp. Oncol. 2020. Vol.42. No.3. P.204–207. https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-3.14918

49.    Lange L., Kötitz R., Haller A., Trahms L., Semmler W., Weitschies W. Magnetorelaxometry ‒ a new binding specific detection method based on magnetic nanoparticles. J. Magn. Magn. Mater. 2002. Vol.252. P.381-383.

 http://dx.doi.org/10.1016/S0304-8853(02)00657-1

50.  Flynn E.R., Bryant H.C. A biomagnetic system for in vivo cancer imaging. Phys. Med. Biol. 2005. Vol.50. No.6. P.1273–1293. https://doi.org/10.1088/0031-9155/50/6/016

51.  Wiekhorst F., Steinhoff U., Eberbeck D., Trahms L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res. 2012. Vol.29. P.1189-1202. https://doi.org/10.1007/s11095-011-0630-3

52.  Adolphi N.L., Butler K.S., Lovato D.M., Tessier T.E., Trujillo J.E., Hathaway H.J., Fegan D.L., Monson T.C., Stevens T.E., Huber D.L., Ramu J., Milne M.L., Altobelli S.A., Bryant H.C., Larson R.S., Flynn E.R. Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI. Contrast Media Mol. Imaging. 2012. Vol.7. P.308–319. https://doi.org/10.1002/cmmi.499

53.  Johnson C., Adolphi N.L., Butler K.L., Lavato D.M., Larson R., Schwindt P., Flynn E.R. Magnetic relaxometry with an atomic magnetometer and SQUID sensors on targeted cancer cells. J. Magn. Magn. Mater.  2012. Vol.24. P.2613–2619.  http://dx.doi.org/10.1016/j.jmmm.2012.03.015

54.  Haacke E.M., Brown R.F., Thompson M., Venkatesan R. Magnetic resonance imaging: Physical principles and sequence design. New York: J. Wiley & Sons.  1999. 973 p.

55.  Seton H.C., Bussell D.M., Hutchison J.M.S., Lurie D.J. Use of dc-SQUID receiver preamplifier in a low field MRI system. IEEE. Trans. on Appl. Supercond. 1995. Vol.5. No.2. P.3218–3221. https://doi.org/10.1109/77.403276

56.  Seton H.C., Bussel D.M., Hutchison J.M.S. A tuned SQUID amplifier for MRI based on a DOIT flux locked loop. IEEE Trans. on Appl. Supercond. 1997. Vol.7. P.3213–3216. https://doi.org/10.1109/77.622015

57.  Schlenga K., McDermott R., Clarke J., de Souza R.E., Wong-Foy A., Pines A. Low-field magnetic resonance imaging with a high-Tc superconducting quantum interference device. Appl. Phys. Lett. 1999. Vol.75. P.3695–3697. https://doi.org/10.1063/1.125432

58.     Mößle M., Myers W.R., Lee S-K., Kelso N., Hatridge M., Pines A. and Clarke J. SQUID-detected in vivo MRI at microtesla magnetic fields. IEEE Trans. on Appl. Supercond. 2005. Vol.15. P.757–760. http://dx.doi.org/10.1109/TASC.2005.850043

59.  Volegov P., Matlachov A.N., Espy M.A., George J.S., Kraus R.H.  Simultaneous Magnetoencephalography and SQUID Detected Nuclear MR in Microtesla Magnetic Fields. Magnetic Resonance in Medicine. 2004. Vol.52. P.467–470. https://doi.org/10.1002/mrm.20193  

60.  Matlachov A.N., Volegov P.L., Espy M.A., Stolz R., Fritzsch L., Zakosarenko V., Meyer H-G., Kraus R.H. Instrumentation for Simultaneous Detection of Low Field NMR and Biomagnetic Signals. IEEE Trans. on Appl. Supercond. 2005. Vol.15. No.2. P.676-679. https://doi.org/10.1109/TASC.2005.849997  

61.  Magnelind P.E., Gomez J.J, Matlashov A.N., Owens T., Sandin J.H, Volegov P.L., Espy M.A. Co-Registration of MEG and ULF MRI using a 7 channel low-Tc SQUID system. IEEE Trans. on Appl. Supercond. 2011. Vol.21. No.3. P.456-460. https://doi.org/10.1109/TASC.2010.2088353

62. Maslennikov Yu.V., Primin M.A., Slobodchikov V.Yu., Khanin V.V., Nedayvoda I.V., Krymov V.A., Okunev A.V., Moiseenko E.A., Beljaev A.V, Rybkin V.S., Tolcheev A.V., Gapelyuk A.V. The DC-SQUID-based magnetocardiographic s.ystems for clinical use. Physics Procedia. 2012. Vol.36. P.88–93. https://doi.org/10.1016/j.phpro.2012.06.218

63.  Maslennikov Yu.V., Slobodchikov V.Yu., Krymov V.A., Sukhodrovsky A.D.,  Gulyaev Yu.V. Magnetometric Systems and Precise Magnetic Measurements for Biomedical Applications. Bulletin of the Russian Academy of Sciences: Physics. 2020. Vol.84. No.11. P.1354–1358. https://doi.org/10.3103/S1062873820110180

 

Для цитирования:

Масленников Ю.В. Практика и перспективы применения сверхчувствительных магнитометров в биомедицинских исследованиях. Журнал радиоэлектроники [электронный журнал]. 2021. №5. https://doi.org/10.30898/1684-1719.2021.5.4