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Abstract. In the paper the modern numerical methods for solving ordinary 

differential equations are testing. These methods are widely applied in simulators of 

RF circuits. As a test problem the relaxation oscillator’s differential equation with 

arbitrary polygonal nonlinearity was selected. An estimation of accuracy of numerical 

methods is received in the case of simulation of the relaxation oscillator. It is shown 

that the error of solution is determined by the methodological error and random errors 

caused by 1) an error of synchronization of the numerical solutions with the period of 

oscillation, 2) changes in the current step. It is shown that the random error of the 

RADAU method far exceeds the same error of the BDF method. 

Keywords: numerical methods, nonlinear differential equations, relaxation oscillator, 

error analysis. 

 

1. Introduction 

Computer modeling of RF circuits and devices in the time domain consists in the 

numerical solution of systems of ordinary differential equations (ODE). In modern 

packages of circuit design and automation of engineering calculations, a large number 

of numerical methods for solving ODE are implemented. The main criteria for the 

effectiveness of numerical methods are their computational complexity and the 

accuracy of the solutions obtained. The accuracy of computer simulation 

quantitatively characterizes the degree of deviation of the simulation results from the 

exact results. For a theoretical assessment of the accuracy of numerical methods for 

solving ODE linear ODEs are used as a rule, for which an exact solution is known. 

Real radio engineering devices are described by nonlinear ODEs, therefore, assessing 

the accuracy of their numerical analysis is a quite complicated task. 
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In [1], a study was carried out of the accuracy of modern numerical methods in 

the analysis of harmonic oscillation generators. This article is a continuation of [1] as 

applied to another class of self-oscillating circuits — relaxation oscillation 

generators. The aim of this work is to assess the accuracy of modern numerical 

methods for solving ODEs in the simulation of relaxation generators. 

The choice of the problem of analysis of the generator of relaxation oscillations 

as a test is due to the following reasons. Firstly, a relaxation generator is an integral 

part of many electronic devices, such as functional generators, radio measuring 

devices, counters, timers, devices that initiate measurements or technological 

processes [2]. Secondly, the task of numerically analyzing a relaxation generator in 

the time domain is one of the most difficult for computer modeling, since the ODEs 

describing a self-oscillator is often both oscillatory and stiff [3]. Thus, an assessment 

of the accuracy of the numerical analysis of the relaxation generator is necessary to 

select the most effective method for modeling self-oscillating systems with varying 

degrees of stiffness. 

2. Model of relaxation generator 

Relaxation oscillations occur in nonlinear electrical circuits that do not have 

frequency selectivity. The simplest circuit model of a relaxation generator can be 

presented as well as a model of a harmonic oscillation generator — in the form of a 

parallel connection of three elements — a linear capacitance C and an inductance L 

and a nonlinear resistive element whose differential resistance (conductivity) can 

change its sign [1]. 

The mathematical model of the relaxation generator (self-oscillator equation) has 

the form of a nonlinear differential equation of the second order: 
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where v is the voltage at the generator output, LC10    is the resonant frequency 

of the LC circuit, G(v) = di(v) / dv is the differential conductivity of the nonlinear 

element, i (v) is the I – V characteristic of the nonlinear element. 
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If the differential conductivity G (v) in the initial portion of the I – V 

characteristic near zero takes a negative value, then self-oscillations occur in the LC 

circuit. When approximating the I – V characteristic of a nonlinear element by a third-

degree polynomial i(v) = a1v + a3v
3
 (a1<0, a3 > 0), equation (1) is called the Van der 

Pol equation and its analytical solutions are known for the steady state. 

Unfortunately, the solution cannot be obtained explicitly, and there are only standard 

numerical solutions specially calculated with high accuracy for some parameters of 

the equation [4]. 

To obtain an analytical solution of the oscillator equation in the steady state, one 

can use the technique proposed in [5]. This technique consists in applying a piecewise 

linear approximation of the I – V characteristic of a nonlinear element. This approach 

allows us to determine the stationary solution of the oscillator equation with relative 

error about 10
-16

. 

The relaxation generator is characterized by significant losses that can be 

estimated by damping factor 

 1Gd  

where LC  is the characteristic conductivity of the LC-circuit, G1 is the 

differential conductivity of a nonlinear element at di / dv > 0. 

In the case of significant losses, d > 2 and the solution of a linear homogeneous 

second-order differential equation is described by the sum of two exponential 

functions. Thus, when using a symmetric piecewise linear function to approximate 

the I – V characteristic of a nonlinear element, the analytical expression for the 

voltage at the output of the relaxation generator in the steady state has the form [1] 
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where  A1,  A2,  A3,  A4 are the integration constants; t0 is the point in time at which the 

conductivity of the nonlinear element changes sign; T is the period of oscillation; 

𝜏1,2 = (𝛿0 ± √𝛿0
2 − 𝜔0

2)
−1

; 𝜏3,4 = (𝛿1 ±√𝛿1
2 −𝜔0

2)
−1

are time constants of the 

oscillator at G (v) = G0 < 0 and G (v) = G1 > 0, respectively; d0,1 = | G.0,1 / 2C | 

Fig. 1 shows the exact stationary solutions of the oscillator equation obtained 

using expression (2) for two different attenuation values d = 4 (solid line) and d = 100 
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(dashed line), the values of the remaining parameters of the oscillator were set as 

follows: L = 1 H, C = 1 F, G0 =  4 S. 

 

Fig. 1. Exact stationary solutions of the oscillator equation. 
 

 

It should be noted that for d = 4, the self-oscillator model (1) can be considered 

weakly stiff, since in this case the stiffness coefficient is equal to the ratio of the 

maximum and minimum self-generator time constants η = τmax / τmin ≈ 10 > 1. For d = 

100, the model (1) is stiff, since in this case η ≈ 10
4
 >> 1. 

The obtained analytical solutions make it possible to estimate the main 

oscillation parameters at the output of the oscillator with a relative accuracy of about 

10
 14

. Table 1 shows the exact amplitudes Am0 and the exact frequencies fm0 of the 

relaxation oscillations shown in Fig. 1. 

Table 1 

d       η Am0 [V] f0 [Hz] 

    4       10 2.765625375929214 0.09132317033942401 

   100 10000 1.084334602144661 0.05506258511132066 

 

3. Numerical solution of the oscillator equation 

In this paper, we estimated the accuracy of modeling the relaxation generator in 

the time domain using three numerical methods for solving ODE: the trapezoid (TR), 

BDF, and RADAU5 methods. A detailed description of these methods is given in 

[6, 7]. The choice for the numerical analysis of the TR and BDF methods is explained 

by the fact that they are the main methods for the analysis of transients in electronic 

simulators. The RADAU5 method is one of the most promising methods of the 
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Runge-Kutta type for solving stiff problems [7]. It should be noted that the RADAU5 

method is three-stage, therefore, its application is reduced to solving a system of 

algebraic equations, the order of which is three times the order of the ODE of a given 

circuit. The TR and BDF methods are one-stage, thus, the computational complexity 

of these methods, which determines the computer time and RAM to obtain a solution, 

is minimal. Multistage methods have increased L-stability and are recommended for 

solving problems of high stiffness [8, 9] 

To assess the accuracy of the above numerical methods, we apply the technique 

proposed in [10] and based on the analysis of the accuracy of the assessment of the 

main parameters of the generated oscillation  frequency and amplitude. The current 

relative errors in the estimation of frequency and amplitude are respectively 

determined using the following relations 
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where f(t) and Am(t) are estimations of the frequency and amplitude of the generated 

oscillation obtained from solving equation (1) by numerical methods. 

Figures 2 and 3 show the time diagrams of the relative errors in estimating the 

frequency and amplitude of the stationary oscillations of the relaxation generator for 

various attenuation and, accordingly, the stiffness of the oscillatory system (see 

table 1). The equation (1) was solved by the numerical methods listed above for a 

given maximum step hmax = T/1000 and the maximum acceptable relative error 

TOL = 10
5

. To estimate the oscillation frequency, we used linear interpolation of the 

numerical solution at the points of sign change v(t), and to estimate the amplitude, we 

used the quadratic interpolation at points of local extrema. The observation interval is 

selected corresponding to the stationary generation mode.  

Fig. 2 and Fig> 3 show the process parameters fm(t) and Am(t) vary significantly 

from one period to another. For a quantitative description of the results obtained in 

table 2 shows the average values of the relative errors in estimating the frequency and 

amplitude of oscillations (mεω and mεA, respectively) and standard deviations (RMS) 

of the relative errors in estimating the frequency and amplitude of oscillations (σεω 

and σεA, respectively). 
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(a)         (b) 
 

Fig. 2. Current relative errors in estimating the frequency of relaxation oscillations 

using the TR, BDF, and RADAU5 methods with hmax = T/1000, TOL = 10
5

, and 

various stiffness of the oscillator model. η = 10 (a) and η = 10
4
 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a)    (b) 
 

Fig. 3. Current relative errors in estimating the amplitude of relaxation oscillations as 

in the case of Fig. 2 

 

Table 2 

η 10 10 
4
 

Метод TR BDF     RADAU5 TR BDF     RADAU5 

m
εω 2.7·10

5
 3.1·10

5
 1.2·10

4
 8.7·10

5
 5.5·10

5
 1.7·10

3
 

σ
εω 4.8·10

6
 4.5·10

6
 5.1·10

4
 1.7·10

6
 7.2·10

6
 5.8·10

3
 

m
εA 5.6·10

6
 1.4·10

5
 4.7·10

5
 4.0·10

4
 2.6·10

5
 2.2·10

4
 

σ
εA 3.7·10

6
 4.2·10

6
 2.1·10

4
 1.3·10

4
 1.9·10

5
 2.3·10

3
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The results of the numerical analysis shown in Fig. 2, Fig. 3 and in Table 2, 

show that the RADAU5 method, as a rule, has the largest values of relative errors 

both in estimating the frequency and in assessing the amplitude of relaxation 

oscillations, regardless of the stiffness of the problem. In addition, the current error 

values for the RADAU5 method can be one or two orders of magnitude higher than 

the similar errors of the BDF and TR methods. This effect is especially expressed 

when estimating the frequency in the case of high stiffness of the problem (see Fig. 2, 

b). In the case of weak stiffness of equation (1) (η = 10), the relative errors for the 

BDF and TR methods are of the same order of magnitude. 

At high stiffness (η = 10
 4

), the current errors εf (t) and εA(t) turn out to be the 

smallest for the BDF method, and the average value of the error in estimating the 

amplitude for the BDF method is approximately 15 times lower than the 

corresponding value for the TR method. It should be noted that the errors of the BDF 

method depend most weakly on the stiffness of the problem in comparison with the 

errors of the other methods considered. As can be seen from Table 2, with an increase 

in the stiffness of the problem by a factor of 10
3
, the relative errors for the BDF 

method increase no more than 4.5 times, while for the TR and RADAU5 methods 

they can increase more than 50 times. 

It follows from Fig. 2 and Fig. 3 that for the TR and BDF methods, the effect of 

synchronization of the error with the period of generated oscillations can be 

observed. In this case, the current errors are, as a rule, periodic in nature, and the 

period of change in errors is a multiple of the period of generated oscillations. In 

addition to the “synchronization error”, the second random component is the error 

observed in the BDF and RADAU5 methods, caused by the step change algorithm in 

the solution process. To verify the correctness of the implemented accuracy 

assessment methodology demonstrated in Fig. 4 and Fig. 5 shows the current relative 

errors in estimating the frequency and amplitude of relaxation oscillations using the 

TR, BDF, and RADAU5 methods with a 2-fold decrease in hmax and a 4-fold TOL as 

compared to the case shown in Fig. 2 and Fig. 3. 
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(a) (b) 
 

Fig. 4. Current relative errors of frequency estimation by the considered methods for 

different stiffness η = 10 (a) and η = 10
4
 (b); hmax = T/2000, TOL = 0.25 10

 5
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

(a) (b) 
 

Fig. 5. Current relative errors of amplitude estimation by the considered methods for 

different stiffness η = 10 (a) and η = 10
4
 (b); hmax = T/2000, TOL = 0.25 10

 5
. 

 

From a comparative analysis of the errors given in Figs 2, 3 and in Figs 4, 5 it is 

seen that with a decrease in TOL by 4 times, the average values and standard 

deviations of the errors of the TR and BDF methods also decrease about 4 times, and 

the synchronization effect weakens. For the RADAU5 method, errors are reduced 

only in the case of a weakly stiff problem, and in the case of a stiff problem, a 

significant increase in the current errors εf (t) and εA (t) is observed. Such an effect 

for the RADAU5 method can be explained by a sharp increase in the rounding error 
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with a decrease in the solution step and the effect of the method’s dense output. The 

rounding error of the RADAU5 method increases due to poor conditioning of the 

corresponding system of algebraic equations, the order of which is three times the 

order of the original system of ODEs [7]. 

4. Estimation of the random component of the numerical error analysis in the 

absence of an exact solution 

It should be noted that the analysis of the error of the numerical solution can be 

carried out partially even in the case when the exact solution is absent. The accuracy 

can be estimated by calculating the relative deviations of the values of the oscillation 

parameters obtained in the current and subsequent periods of the decision: 

;  

In the general case, increments of errors on adjacent periods should be less than 

or equal to the optional error. However, as shown in Fig. 6 and Fig. 7, the 

dependences δf (t) and δA(t) obtained by solving equation (1) by the same methods 

and at the same values of hmax and TOL as the dependences εf (t) and εA (t) in Fig. 4b 

and Fig. 5b are not always small. Thus, excess solution noise can be detected without 

determining the exact values of the process parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. The dependences δf (t) obtained by the using the TR, BDF, and 

RADAU5 methods at hmax = T/2000, TOL = 0.25 10
 - 5

, and η = 10
4
. 
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Fig. 7. The dependences δA (t) obtained by the using the TR, BDF, and 

RADAU5 methods at hmax = T/2000, TOL = 0.25 10
 - 5

, and η = 10
4
. 

 

5. Discussion 

Evaluation of the accuracy of solving a particular problem by local or even 

interval (global) error does not give a general idea of the accuracy of the analysis of a 

numerically modeled process. Often, to prove the suitability (or unsuitability) of a 

method, a schedule for solving a one-dimensional or two-dimensional problem is 

given [7, 9]. The lack of a quantitative assessment of the quality of modeling of the 

investigated process leads to attempts to supplement the concept of "error of solution" 

with the concept of "reliability of the solution". 

In the present work (and in [1]), the estimation of the error of the solution was 

carried out according to the parameters of the investigated periodic process. This 

approach allows us to replace the huge data array of current errors with a much more 

compact and visible one, which in some cases allows us to perform a more detailed 

analysis of the error structure that is not available to graphical methods. In the case 

under consideration, the RADAU5 method revealed a significant component of the 

error caused, apparently, by the imperfection of the algorithms for automatic step 

selection and / or dense output. The corresponding Gear algorithm turned out to be, 

on the contrary, very efficient. Evaluation of the error of the solution by the 

parameters of the stationary process allows us to detect random error components 

associated with the synchronization of the solution with the step and the imperfection 
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of the step selection algorithm for any problem with a periodic solution without 

determining the exact solution. 

Summary 

The estimation of the accuracy of the numerical analysis of the relaxation 

generator complements the known theoretical and experimental estimates of the 

properties of numerical methods for solving differential equations for oscillating 

systems given in [1, 10, 11]. The accuracy of the methods was controlled not by the 

error in determining the variable, but by the errors in determining the main 

parameters of the stationary process - the frequency and magnitude of the oscillation. 

As a test problem, the analysis of a self-oscillator is considered, in which the I – V 

characteristic of a nonlinear element is approximated by a piecewise-linear function, 

which allows one to obtain an exact stationary solution and its main parameters 

necessary for estimating the errors of the tested numerical methods.  

The results of testing of the numerical methods obtained in this paper allow us to 

substantiate the choice of one or another method for obtaining reliable and most 

accurate simulation results for self-oscillating systems with varying degrees of 

stiffness. In addition, in this paper, a method for evaluating the accuracy of the 

numerical analysis of nonlinear oscillatory systems in the absence of an exact 

solution is proposed and justified. 
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