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Abstract. The problem of T-mode propagation in the cruciform waveguide is solved. 

The boundary problem is reduced to an integral equation that is solved with help of 

Galerkin’s method. Expressions for dominant eigen mode field components are 

obtained. They are used for characteristic impedance calculation. Results of 

numerical simulation of characteristic impedance behavior are presented. They are 

compared with results obtained by HFSS, and good agreement between them is 

demonstrated.  
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1. Problem formulation 

Development of an ultra-wideband (UWB) antenna arrays is an actual problem 

that was considered in many works (see for example [1], [2]). Factors that prevent 

UWB antenna array operating frequency range (OFR) expansion are noted in several 

papers [3], [4]. One of them is a transition connecting different transmission lines 

(TRL). Such device has a limited OFR that determines array OFR in total. For 

example widely known in UWB applications Vivaldi antenna contains transition 

from microstrip to slot line [5]. Usually the transition connects TRL with a standard 

value of characteristic impedance close to 50 Ohm. In these conditions it is very 

difficult to obtain OFR greater than 10:1 (we define OFR as a relation of maximum 

frequency Fmax to minimum frequency Fmin). Attempts to construct UWB array 

without above transition presented in [6] and [7] were not successful. Considered in 

these works arrays do not operate in a proper way because of parasitic effects of 

anomalous backward radiation [6] and impedance anomalies [7]. 
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New concept of UWB array - so called dual section array was presented in [8]. 

This array also contains transition connecting different TRL. However these TRL 

have relatively low impedance in the point of connection. As it was demonstrated in 

[8] application of low impedance TRL increases array OFR thus that noted above 

limit 10:1 may be overcame.  

In frame of dual section array concept application of slot lines for electromagnetic 

wave radiation is not convenient. Naturally slot line has relatively high impedance 

and extremely narrow slots are required for lines with impedance sufficiently lower 

than 50 Ohm. Thus another TRL with naturally low impedance should be used in 

dual section arrays. Planar waveguide was proposed in [8] as such TRL for single 

polarization array.  

More complicated transmission media is required for dual polarization array. It 

should support propagation of two modes with different polarizations. A 2D array of 

metal rods with square cross section may be used as such transmission media (see fig. 

1). Eigen modes of this structure have extremely small impedance when distance 

between rods is enough small and their impedance is close to free space impedance 

when rod size is close to zero. Thus this structure with variable rod size is good for 

application as a second section of dual section array.  

 

Fig. 1. 2D array of square metal rods 

We may also consider array of metal rods as an impedance transformer. 

Dependence of array eigen mode impedance on geometrical parameters is required 

for correct transformer design. One has to solve an eigen mode boundary problem to 
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obtain this dependence. Solution of the problem is the main subject of this work.   

Array eigen modes depend not only geometrical parameters but they also 

depend on scan angles or phase shifts between array periods. In this work we 

consider particular case of in-phase infinite 2D array of square metal rods. It is a 

known fact that infinite array analysis in quasi periodical regime may be reduced to 

analysis of one array period (see fig. 2) – so called Floquet channel [9]. Floquet 

channel is a waveguide of special type with periodical boundary conditions on its 

walls.  

 

Fig. 2. Array period. 

 

Fig. 3. Cruciform waveguide. 
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For in-phase array walls with periodical boundary conditions may be replaced 

by more simple perfect electric (PE) and magnetic (PH) walls if array period has 

planes of symmetry as it is shown in fig. 3. Thus we obtain cruciform waveguide that 

is the main subject of our work.  

2. Boundary problem formulation and solution 

Waveguide cross section (fig. 3) has planes of symmetry XOZ  and XOY . 

Therefore there are eigen modes with equal to zero at , / 2x y P   tangential 

components of electric and magnetic fields. Due to it we may place in the 

corresponding planes perfect electric or perfect magnetic walls and analyze one 

quarter of the waveguide.  

 

Fig. 4. Quarter of cruciform waveguide. 

The most interesting for our analysis combination of walls is shown in fig. 4. 

One may see that the structure contains two isolated conductors and therefore the 

dominant mode of the waveguide is a transversal T-mode. Next let us divide inner 

part of waveguide cross section onto two regions 1,2 as it is shown in fig. 4.   We 

present fields inside regions 1,2 in form of the following expansions:  
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here   is a propagation constant, ,n nA B  - unknown coefficients, k  - free space 

wavenumber. In formulas (1) common for all expressions term exp( )i z  is 

omitted. Presence of multipliers  2 2k   will be explained below.  

Next let us find field components xE , xH , with help of known relations [10]: 
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where 0W  - free space wave impedance. 

Now we may express coefficients ,n nA B  through electric field ( )x  in plane 

/ 2y w : 
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 Let us note that T-wave propagation is equal to k . It is easy to see that in this 

case longitudinal field components are equal to zero while transversal components 

have finite values. Such field behavior explains presence in expressions (1)  terms 

 2 2k  . 

 The following expressions are also valid for T -wave:   

 1,2 1,2n n  .         (5) 

 Writing coefficients in form (4) we automatically satisfy boundary conditions 

at / 2y w . Thus next we have to satisfy boundary conditions of magnetic field 

continuity at / 2y w , 0 / 2x w  . Substituting relations (4) to expressions for 

magnetic field in regions 1,2 and equating them we obtain required integral equation 

for electric ( )x : 
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0 / 2x w  . 

Galerkin’s method is a typical way for integral equations solution. However it 

is not convenient to apply it directly to equation (6) because it has non symmetrical 

kernel. Let us integrate expression (6) over variable x to obtain new form of integral 

equation with symmetrical kernel:  
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where C  a constant of integration. 

 We may apply Galerkin’s method to integral equation (7) solution because now 

left part of expression (7) identically depends on arguments ,x x . In accordance with 

Galerkin’s method we present unknown function as the following expansion: 
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where ( )mf x  are known base functions and mR  are unknown coefficients. 

 Let us substitute expression (8) in equation (7) and find projection of the 

equation on the same system of test functions (8). In frame of Galerkin’s method test 

functions coincide with base functions (8). As a result we obtain system of linear 

algebraic equation (SLAE) relatively coefficients mR : 
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 Choice of base functions is an important step of Galerkin’s method. These 

functions should maximally takes into account information about field behavior. In 

our case such information is field behavior near the edge of perfectly conducting 



JOURNAL OF RADIO ELECTRONICS (ZHURNAL RADIOELEKTRONIKI), ISSN 1684-1719, N9, 2019 

8 

wedge with 
090  angle that is located in point / 2x w . Meixner conditions 

determine field behavior in wedge type regions [11]. The following system of base 

functions takes them into account: 
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 Integrals 
1,2, ,n pI  are expressed through Bessel functions [12]: 
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where 1/6J  is Bessel function with order 1/6,   is Gamma function. 

 SLAE (9) solution determines mR  proportional to arbitrary constant С that is 

typical for eigen mode problems. This constant may be unambiguously find only as a 

solution of waveguide excitation problem.
 

3. Т-wave characteristic impedance 

 
After SLAE (9) solution we may find eigen mode field and characteristic 

impedance Zc. We define it as a relation of voltage U to current J:  
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 Coefficients ,n nA B  should be expressed through coefficients
 
Rm that are found 

from SLAE (9) solution: 
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 T-wave components Ну and Ех are connected by the simple relation: 
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 With help of the last notes we find: 
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4. Numerical algorithm convergence 

 Let us next consider results of boundary problem numerical solution. 

Convergence of the described above algorithm is an important problem. Source of the 

solution error is a finite number of base functions N  and corresponding substitution 

of infinite series by finite sums. Parameter N  is usually selected from numerical 

experiments with help of criteria of solution independence on parameter N .  

 It is reasonable to introduce two groups of parameters: primary and secondary. 

Eigen mode field is our primary parameter. Eigen mode characteristic impedance is 

the secondary parameter that may be obtained through eigen mode field integration. 

Thus we may also consider characteristic impedance as an integral parameter.   

 Let us now consider convergence of primary parameter – eigen mode field. For 
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it we should study dependence of electric field ( )xE x  on parameter N . 

Convergence of integral equation solution may be also described with help of 

parameter F  that is defined by as follows: 

 

/ 2

0

2 ( )
w

F x C
F dx

w C



  ,      (16) 

where ( )F x  is the left part of equation (7). Parameter F  characterizes tolerance 

with which boundary condition for magnetic field is satisfied. 

 Dependence of normalized electric field ( )xE x  on coordinate x is shown in 

fig. 5 a,b.  We normalize electric field on its value at x=0. Curves 1 – 4 in fig. 5а are 

obtained for 15P  , 2,4,6,8N  , 1.7w  , and in fig. 5b for 11.4w  . One 

may see a trend to solution of integral equation stabilization when  N  is increased.  

Speed of convergence for electric field weakly depends on distance between w . We 

may state that for 8N   relative changes of electric field are negligibly small. 

 

a  
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b 

Fig. 5. Dependence of normalized electric field on coordinate x 

 

 Dependence of functional F  on distance w  is presented in fig. 6. Curves 1 

– 5 are calculated for 15P  , 2,4,6,8,10N  . It is seen that this parameter 

sufficiently depends on distance w . It rapidly grows with growth of w . Thus for big 

distances w  we have to apply relatively big number of base functions to obtain 

enough small value of parameter F than for small distances.  

 Convergence of integral parameter cZ  sufficiently differs from primary 

parameters convergence. Dependence of characteristic impedance on parameter N  is 

presented in fig. 7 a,b. The curve in fig. 7a is calculated for 15P  , 1.7w   and 

in fig. 7b for 11.4w  . It is seen that the analyzed parameter weakly depends on 

number of base functions. It is also seen that speed of convergence weakly depends 

on distance w . Characteristic impedance is practically stable when 4N  . 
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Fig. 6. Dependence of functional F  on distance between conductors 

 

 

a  
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b 

Fig. 7. Convergence of integral parameter Zc 

 

 Different speed of convergence for integral and primary parameters is character 

for integral equation solution by Galerkin’s method. It is a known fact [13] that 

integral parameters obtained by this method are stable relatively small variations of 

solution for field. As a result even sufficient errors in field have negligible influence 

on integral parameters. This property is an advantage of Galerkin’s method that 

allows us to use a limited number of base functions for calculation of practically 

interesting parameter cZ .  

5. Results of numerical solution of integral equation 

 The analyzed structure is relatively simple because it has only one free 

parameter /q w P . In addition because T  - wave field satisfies Laplas equation 

it does not depend on frequency.  Dependence of characteristic impedance on 

parameter  q  is shown in fig. 8. The impedance varies from 0qW  when 1q   to 

0W  for 1q  .  

 The following approximate expression is obtained for function ( )cZ q : 
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2

0( ) (1 1.273 (1 ))cZ q qW q q   .     (17) 

 Formula (17) describes characteristic impedance with relative error less than 

2% and it may be used for solution of engineering problems.  

 

Fig. 8. Characteristic impedance versus parameter q 

Conclusion 

 Thus in this work an approach for analysis of a dominant eigen mode of an 

infinite array of square metal rods is presented. Numerical algorithm based on this 

approach demonstrates high efficiency and it may be used for the second section 

synthesis of a dual section UWB array.  

The work is performed in the frame of state assignment (project 0030-2019-

0014) and is supported by Russian Foundation of  Basic Research  (project No. 18-

07-00655 a). 
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