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Abstract. We present analytic solution to fundamental irvevanultiple scattering
theory Lippmann-Schwinger (LS) integral equatiorr felectric field quantum
mechanical type tensor T- scattering operator bymagnetic arbitrary shaped
particle with given scalar dielectric permittivignd specific conductivity in free
space. The solution is obtained with the aid oéeter expansion functions’ basis and
Galerkin method and written as sum of separabléesoay operators weighted by
inverse of a generating matrix, which is expressedugh matrix describing wave
coupling between the particle elements. Similar sggaparable (QS) form is
obtained for T-scattering operator of coupled ipks$’ ensemble, when generating
matrix is related with matrix describing wave congl between particles; an
equations’ system for self consistent currents teglcinside coupled particles is
derived on this way alsdéiaving given directly the current excited insidetjgde, T-
scattering operator should be closed connectedwatle spatial dispersion effect in
homogenized electromagnetic crystal structure. liReae show the rigorously
defined a periodic structure effective dielectrierrmittivity tensor is exactly
expressed by unit cell QS T- scattering operatail) wyenerating matrix related to
matrix of wave coupling between unit cell partsctirectly and via crystal. In order
to test and apply the QS T-scattering operatorcambr, some different choosing the
vector expansion functions are considered. In thee cof vector spherical wave
functions’ basis the QS T-scattering operator gitres Mie solution for incident

plane wave scattering from and transmitted intgplaescal particle. The another
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basis vector expansion functions defined on figkements of particle volume is
consistent with QS approximation of particle saaite potential operator, for which
the LS equation is resolved exactly. Next, an asgtigo formula is obtained for
contribution of spatially resonant coupling betwdem small spherical plasmonic
particles inside unit cell of electromagnetic caysinto the structure effective
magnetic permeability. We study at last some sinmplg dimensional ordered
periodic arrays of particles, with particles’ caungl matrix obeying a stochastic
property for the case of specifically linearly patad wave electric field, and find
corresponding stochastic and overtone eigenmodeésrathod of their excitation.
Exact and asymptotic formulas are found also fandihg and propagating wave
transfer of currents’ exciting along a strait linednain of particles with Jacobi’'s
coupling matrix.

Keywords: electromagnetic wave field, arbitrary shaped nommég coupled
particles, multiple scattering, T-scattering oparatippmann-Schwinger integral
equation, analytic solution, currents excited iaspdrticles, electromagnetic crystal

structures, low dimension arrays of particles.

1. Introduction

Theory of electromagnetic waves’ multiple scattgriby dielectric and
conducting nonmagnetic particles appears at presetaol for numerous studies of
artificial materials and especially of microsizedrtles’ assemblies, which are
useful in variety of optical applications becausdéheir resonant interaction with a
visible and infrared light. Between these studleere¢ are the following interesting
examples. Microstructured periodic materials knoas “metamaterials”, with
negative effective dielectric permittivity and/oregative effective magnetic
permeability being derived either by spatially agng the Maxwell equations on
base of a self-consistent rigorous approach[l]arsao called full-wave dispersion
relation [2,3] describing small nanoparticles innis of their dipolar polarizability
and using the local field approach. Contribution afupled magnetic dipole
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resonances in small dielectric spheres’ clustets ihe effective permittivity and

permeability, being evaluated with the aid of deas Clausius-Mossotti

homogenization formula [4]. Previously space-grotgsonance in clusters of
nonresonant particles was considered [5, 6]. Thelowgbetween optical waveguides
and high-quality resonators, which can being crkatathin a photonic crystal

structure with modified some unit cells [7]. Highuality optical modes in low

dimensional arrays of dielectric nanoparticles isidwithin the coupled dipole
approach [8, 9]. Earlier similar modes were studiedheory of coupled parallel
antennas [10].

Turn directly to main subject of our paper concegniith itself theory of
electromagnetic waves’ multiple scattering by diZie and conducting particles.
This theory can be started with Lippmann-Schwin@Je8) integral equation for
electric wave field tensor (dyadic) T- scatteringemtor by a particle, written
similarly to the quantum mechanical case [11-14viHg given directly the field and
current excited inside a particle [15] as well las field scattered by the particle, the
T-scattering operator technique has been applyuegessfully for a long time. As
early as 1967, a derivation was proposed [16] (s¢s0 [17,18]) of the
phenomenological radiative transfer equation insardte randomly inhomogeneous
medium, with due regard for correlation of partscle all orders and wave coupling
between particles within the same cluster of pladicThe Dyson and Bethe—Salpeter
equations were used in the single- group approximat.atter there were derived
[19] exact self-consistent Dyson and Bethe-Salpetquations (relations) for
evaluating the ensemble averaged wave electrit fietl coherence function of wave
electric field inside dense discrete random medithh random mass and intensity
operators having been under averaging sign andewrih terms of the particles’
correlations functions of all orders and particlelsislers random group T-scattering
operators. A group T-scattering operator was caonstd via special group operation
from T-scattering operators of cluster particlesthwr-scattering operator of a

particle set having been satisfied a self considt8requation, integral term of which
3
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included exact random Green function and deschiaeticle coupling via the random
medium. These self-consistent Dyson and Bethe-&algguations gave all known
approximations for wave multiple scattering in ramdmedia including the single
group approximation. Ward-Takahashi identity fobtfsequency combination of T-
scattering operators was proved [20] to derive rdmiative transfer equation with
time delay via effect of pulse entrapping in a resd random media. Mentioned
above [7] scattering theory analysis of waveguessnator coupling was based on
T-scattering operator, actually. Artificial magrseti in theory of wave multiple
scattering by random discrete nonmagnetic condgiatiedia [21] was considered
with the aid of Dyson equation technique and gdizexh Lorentz —Lorenz formula
including the Fourier transform of T-scattering mgier of a particle. Referred to
metamaterial effective permittivity derivation byadially averaging the Maxwell
equations [1] was performed with the aid of LippmeSchwinger integral equation
for electric wave field inside periodic media tlatctly connected , actually, to a T-
scattering operator of a periodically structurel.cBecently [22] the T-scattering
operator technique was used to phenomenon studyrtafl singular scattering of
electromagnetic wave on a dielectric scatterer elad@ into a flat left handed
material slab (Veselago lens). Watson compositiole [12,17] of T-scattering
operators was reformulated [23] in terms of virtgplitting the volume or surface
inhomogeneous dielectric structure into a stacklementary layers and the system
of recurrent equations of invariant imbedding metf@4] type obtained for changing
the reflection and transmission coefficients ofcktaf N layers at (N+1% layer
attachment.

Despite of enumerated T-scattering operator dampgplications, to the best of
our knowledge, there is no still sufficient attention systematic method of solution
to LS equation for this operator and instead thatWaterman transition matrix [14,
25-27] in the form, as one can verify, a simple boration from electric wave field
dyadic Green function in free space and T-scatjesiperator widely has been using.
The transition matrix technique expands the indideand the scattered
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electromagnetic waves by a particle in vector dpherwave functions, with
expressing the expanding coefficients of scattemade through the expanding
coefficients of incident wave with the aid of thwartsition matrix. As making so, the
transition matrix is written with the help of thextended boundary condition
technique in terms of surface integrals from vedpherical functions’ bilinear
combinations along the particle surface. A subshiprogress has been achieved
during last one and half decade in the form of nesursive transition matrix method
for calculating local electromagnetic fields insidé spheres, system of which is
subject to strong dependent scattering [28,29].ughahis achieving, the transition
matrix technique needs in some improvement at ptébat is returning our attention
to T-scattering operator. Really, using the splaéngave functions in the case of
particles with complicate shape becomes nonrati@vadently. T-scattering operator
gives directly the field inside a particle, wherdae transition matrix technique
implies additional application of Mie internal fielcoefficients for evaluating the
field in the interior of a particle [29]. Applicatin the transition matrix technique can
be difficult for rigorous evaluating an electromagio crystal structure effective
dielectric permittivity [1] that directly connecteslith T-scattering operator of the
structure unit cell.

The aim of our paper consists in considering aesyatic method on practical
solution to LS equation for electric wave field dya T-scattering operator in the
form of quasi—separable (QS) approach. This appr@aopted from the quantum
mechanical scattering potential approximation as) saf separable potentials in
nuclear physics [30]. In electromagnetics the sagar approximation for small
particle scattering potential was used at studyrdagative transfer with time delay
via effect of pulse entrapping in resonant randosdia [20] as well as the wave
virtual singular scattering by scatterer inside &lago lens [22]. We apply a vector
expansion functions’ basis and Galerkin techniq@8,31,32] exploited [1] to
evaluate a metamaterial effective dielectric pemiy and employ by us to solve the
LS equation for dyadic T-scattering operator in @®m as sum of separable
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scattering operators weighted by inverse of a gdimgr matrix, which is expressed
through wave coupling between the particle elemenddrix. One can apply various
vector expansion functions’ bases. In the caseeofor spherical wave functions the
QS T- scattering operator gives the well known Bbéution for incident plane wave
scattering from and transmitted into a sphericaligla. We show that a basis vector
expansion functions defined on finite elementsantiple volume in spirit of general
finite element method [33] and used more earlieHagr [34] enables one to verify
that QS T-scattering operator corresponds reallg ©@S approximation of particle
scattering potential operator, for which the LSaepn is resolved exactly. Next our
goal consists in constructing the QS T-scatteripgrator for coupled particles’
ensemble with generating matrix related with wagapting between particles, that
we make by exact solving the Watson compositiore r{ll2] of T-scattering
operators. On this way we exploit the invariant @dtling method idea [23,24] to a
recursive procedure creation for QS T- scatteringerator generating matrix
inversion, by attaching to N coupled particles a+INst particle and using the
Frobenius formula [35] for inversion afx2block’s matrix. Side by side with this
recursive procedure for inversion of the QS-T-sraiy operator generating matrix,
we consider an equations’ system for self condistarrents excited inside coupled
particles and apply this system to study new effémt some simple low dimensional
ordered particles’ arrays in the form of periodatyygon chain [9,10] as well as strait
linear chain [3]. We show the patrticles’ couplingitnix of periodic polygon chain
obeys a stochastic property [35] and find corredpan stochastic eigenmodes and
overtone ones and method of their excitation. E@itdinear chain [3] with Jacobi’'s
particles’ coupling matrix rising to Rayleigh's Bo¢36] yet we derive exact and
asymptotic formulas for standing and propagatingemaansfer of currents’ exciting
along the strait linear chain. Our last generalultesoncerns the deriving an
electromagnetic crystal structure unit cell QS &tsring operator, with generating
matrix related with matrix of wave coupling betwetlie unit cell particles directly
and via crystal electric field dyadic Green funotidhis QS T-scattering operator we
6
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apply to analytic consideration of space—group masoe effect [5,6] between the
unit cell small plasmonic particles contributioriarthe structure effective magnetic
permeability, without applying a priory of Clausifossotti homogenization
formula.

The organization of the paper is as follows. Int®ec2 the starting LS
equation for dyadic T-scattering operator of aipkris resolved in QS form. Section
3 contains deriving the QS T-scattering operatoefisemble of N coupled particles,
by resolving the Watson composition rule of T-sedtiy operators. The recursive
procedure for QS T-scattering operator generatirgjrirn inversion is created in
Section 4. Section 5 includes consideration an teans system for self consistent
currents excited inside ensemble of coupled padidlhe QS T-scattering operator
for electromagnetic crystal unit cell is derived Section 6, with getting an exact
formula for metamaterial effective dielectric pettimity in terms of the unit cell QS
T-scattering operator. Applications of the QS T+Hscang operator are placed in the
Section 7. In Section 8 we conclude. AppendiceB And C consist of details related
to spherical particle QS T-scattering operator gaivey matrix, finite element vector
expansions’ functions and strait linear chain wisttobi’s particles’ coupling matrix,
respectively. Some preliminary results of this papere reported to recent PIERS

symposium [37].

2. Quasi-separable T-scattering operator of partia in free space
2.1. Lippmann-Schwinger equation
We start with Lippmann-Schwinger (LS) integral et for total electric

field E(F)of monochromatic electromagnetic wave outside andide of a

nonmagnetic particle with given scalar dielectriermittivity £ (") and specific

conductivity ('), the particle being placed in homogeneous nonmagne

background (free space) with dielectric permityivét, and the electromagnetic field
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source volume current densify' “(f') . The LS equation for the total electric field has
in dyadic denotation form

E(F)=E® (N +[dr"GO(r-r) V(E () (1)
Here E°(F ) denotes the incident on particle electric fieldegi by

4m NS = =\ T SC !
— [dr'G O, r) () @)

EO(F) =

The symbolg(o) (I —=T") denotes the electric field dyadic Green functiofree

space of a form
GOF -y =| T+ 00 |G, (F -7
(r-r)= % o(F =) 3)

with I and ko = (w/c) 8%’2 and G, (r) = exp(k,r)/(-4nr) being the unit dyad and
free space wave number and free space scalar Gueetion, respectively. The

guantity V(r) is named as particle scattering potential andnddfiin terms of

. . _ B
particle complex permittivityé =& +i (47w /) by V() ==— (€ =€(). The
C

Gaussian system of units is used andenotes the light speed in vacuamd G
denotes wave frequency. The magnetic permeabiitysupposed to beu=1
everywhere. The LS-equation derivation from Maxvwegjuations has been given in
[14,38] with the aid of vector Green theorem ancoaating the boundary
conditions.

Solution to the LS equation (1) for total electfield is written in terms of

dyadic T—scattering operator as
E(r) = E®(F) +[dr [dr" GO (-1 T (7', E(F") @)
Comparison of this equality with integral Eq. (Iyes LS integral equation for T-

scattering operator
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T(f (r,r')y=Vv(r)l J(r - )+V(r)J.d*"G O - *")T (r',r') (5)

From equations (1) and (5) one gets [15] the fdl@wphysically transparent

relations
S0\ _Admo W = _ Ao
J(F)=V(r) E(r)= 2 {0+4m (€ %)}E(r)— iz ()
= [drT(r,1)E® () (6)
0J(F)=0

These relations show that one can evaluate thedeztric field E(F) as well as the

complete currentj (i) excited inside particle, having known the parti€lscattering

operator. We see also from Eq. (4) that convolu@fT of the electric wave field

dyadic Green function in free space with T-scattproperator gives, actually, the
Waterman transition matrix [14, 25-27]. The lasvelgence Eq.(6) imposes a
solenoidal restriction on T-scattering operatorpvied the complex dielectric

permittivity has constant value inside particle.

2.2. Quasi-separable solutiomo Lippmann-Schwinger equation

Let us apply to solution of LS integral equatioh f@ T-scattering operator a
Galerkin technique [1,28,]. With this aim we choaseector expansion functions’
basig (f) , n=1,2,3,... Dividing dyadic Eq.(5) by potenti&l (I) and multiplying

result on vector, () from the left side and integrating with respect'tgives

jdr 1 £ (DT (F,F) =1.(F") + jdr jd"" (F)G O (F -F")T (7", 7)

We seek a solution to obtained equation in a forayadic expansion

T(F,F)= Zt (F)ot, () @)



JOURNAL OF RADIO ELECTRONICS , N4, 2013

with T,(F") being a set of unknown vectors and symhbuadenoting the dyadic

product of two vectors. Substituting (8) into E@) [eads to an algebraic equations’

system for unknown vectors
> (n|x@mt, () =£,() ©)
m

The generating matri><n‘)((0)‘m> under left hand side (LHS) sum of Eq. (9) is

defined by expression of two terms

(x©|m) = [d r#v(lr*) LOLM-(g%m)

the second of which describes wave coupling betwleeparticle elements in free

space according to
<n\g<°>\m> = [dr[dFE, (GO -0

(0) —1‘

Resolving equations’ system (9) with the aid ofeirse matri><<n‘)( m> as

L) =X (x| m)E,(r) -

and substituting the resolution result into dyashpansion (8) right hand side (RHS)

leads us to quasi-separable (QS) solution to L&ynal equation (5) for T-scattering

operator of a particld © (F,7') in free space
= (0) (& P — 0)-1 F (& F (!
TOEM =Y, (ML O0LE g
nm
The reciprocity of the electric field dyadic Gredémnction in free space

GO, ") = G'(",F) where the superscript refers to the transpose dyadic,

leads to the symmetrical property of the partideping matrix elementén‘g(o)‘ m>

= <m‘g(°)‘n> and the generating matréO‘X(O)‘m> = <n'<)((o)‘n>. The inverse matrix
10
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symmetry propert;(n‘)( (O)_l‘m> = <W<)( (O)_l‘n> agrees with the T-scattering operator

reciprocity T TC '(F,T") = T(O)t( ,r).

3. Quasi-separable T-scattering operator of parti@d’'s ensemble in free
space
Having obtained QS T-scattering operator (13) single particle, one can get

automatically QS T-scattering operator iofcoupled particles’ ensemble, with their

centers being placed aﬁ,---,rN points. To this end we start witllvatson

composition rule [12] for T-scattering operatorsiform

T(F,7") ZTW(* ) 14

and

TAO(F FY=TO(F -7 7 —F
T(r,r)=T"(r—r,f rj)

J‘d—»nj dl;»m-?(O) (r» _ r r )G (O) (—>II _ —»m)z-l- (j' )(—»m —»r) (15)

i'#]

Here TV (F,F") andT ©(F ~T,," = T,) are self consistent and single T-scattering
operators of ensemblg-th particle, respectively.

Substituting QS T-scattering operators (13) inte.H45) RHS leads to exact
solution of this equations’ system. We seek sucltism in a form of dyadic

expansion

TOr ) =Y 6F-7) 0T ) (16)

similar to (8). For unknown vector-En(J)(F'), j=1...,N one gets an equations’

system

11
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TOE) =5 =)+ XY (g0

m j'#]

with inhomogeneous terms being defined by (12)raattix elements under double

sum given by

) =S5 o

where the matrix of particles’ coupling

9|y > (18)

. 0 .y 0 d =
<nj‘g()‘mj> _[drjdr EF-F)GOF-F)T,(F'-T) (o9
Is similar to (11). The quantity(l(o) denotes the generating matrix (10) of single

particle.

The dyadic expansion (16) and relations (6) shaw Bys.(17) system is basic
one to evaluate the total electric fields and catgpkturrents excited inside coupled

particles. To avoid in the second sum of Egs.(¥%)esn RHS restriction]' Z ] one
. O’ e o=t . . .
can put condltlonally<nl‘9 ‘mJ >= 0 if J =] and introduce next unit matrix

<nj‘|‘mj> Oum9j» and matrixA, with elements
(nj A mi’) = nj [t mi") = (ni G| mi") @0)

— N1
that is the Egs. (17) system matrix. With the didesolvent matrixRN - AN the

solution to Egs. (17) system is written as

TO(F) = z<nJ|RN|mJ V(7 =T, on

12
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Substituting this solution into dyadic expansiof)(RHS and denoting
: (0)-1 (0)-1
(b mit) =% 2 ARy e m

gives the self consistent T-scattering operat@nsemblej th particle

TO(F ') = Z <ﬂJ‘XN(O) 1‘mj >t (P0G =F) g

nmj’

The last step with using the Eq. (14) leads torddSQS T-scattering operator of

particles’ ensemble in free space

T = Y (nipxmi") 6, o -1,

njmj’

~—
]
—
3
~
=
I
4
~—

(24)

. (0) .
The inverse<nJ ‘/YN ‘ml > to the matrix (22) is the generating matrix for

coupled particles’ ensemble.

. O -y
Note while particles’ coupling matrix (19) is symimieal one<nJ ‘g( )‘ my >

y

unless the matrices (10) and (19) commute.

O)| i . . . . .
g ‘nJ> the transformed particles’ coupling matrix (18nist symmetrical

4. Quasi-separable recursive procedure for resolwe matrix evaluation

4.1. Recurrent equations with a particle attachmen

Return to Watson composition rule for T-scatterapgerators in Egs. (14) and
(15) and consider a special case of two “particlegth first complicate particle

consisting , actually, the coupled particles’ ensemble, the T- scattering aijperof

which (24) we denote temporaIISIrTlN, and a single(N +1)-st particle, the T —

13
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scattering operator of which we denote tempordlfys1n+1. In this special case

Watson composition rule takes a form

T —T17 @ L7
T1N+1 — "IN +TN+1N+1 (25)

and

T —T 4T _(o (2)
T T T )TN+]N+1

TR - T ~ (O (1) (26)
TN+1N+1 TN+1N+1 N+]N+1G )T
Egs. (25) and (26) system describes physicallyaaging T-scattering operator of

coupled particles’ ensemble at attachment a singdlet+1)-st particle to this
ensemble. These equations’ system was used in[EF3fto study of changing the
reflection and transmission coefficients oflayers’ stack a{N +1) -st infinitesimal

thin layer attachment. One can recognize a usiegEfs. (25) and (26) system in
Refs. [28,29] at elaborating the recursive traositmatrix method for calculating
local electromagnetic fields inside of coupled spbe Nevertheless, analytic
investigation of Egs. (25) and (26) system shoved there is not more complicate

and perhaps more simple alternative recursive ndetimo evaluate T-scattering

operator Iins1 of N +1coupled particles at attachment a singie+1) -st particle

to known T scattering operataTﬁN of N coupled particles. The alternative method
Is based on the basic Egs. (17) system matrix (B@)ck splitting and the Frobenius

formula [34] application for the block matrix inason.

4.2. Matrix AN+1 block splitting

Turn to matrix (20) in the case of +1coupled particles and write of this one

in details as a table matrix

14
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A
I O —<n1|g(°)|m2> ...... —<n]lg‘°)|mN> —<n]|g‘°)|mN+ ]>_
—<n2|g(°)|m1> 3., —<n2|g(°)|mN> —<n2|g(°)|mN +1>
- T (27)
—<nN|§<°)|ml> —<nN|§‘°>|m2> | 3. —<nN|§]“;’|mN +1)
—<nN +1|g<°>|m1> —<nN + Jjg<°>|m2> —<nN + 1g<°)|mN> 3.

According to vertical and horizontal lines one aarderstand this matrix a&x2
block matrix of the form

[A B
AN+1_ C D (28)

Here the left up corner block matrix is appearetaocA = A, and the right down

corner block matrix coincides with matrix eIeme{rﬁlN +J1{mN +1> = O of unit

matrix. The block one columB and one rowC matrices are given by
. .-y _ |~ 0 . .
<nJ‘B‘mJ >——<nj‘g()‘mN+1>5er+1, J=1--N (29)
and

(njcimi”) = —<nN +ﬂ§(°)‘mj'>5m+1; j'=1--,N (30)

. . — AL .
Next we are interesting in resolvent matfy+1 = A1 corresponding to

the case ofN +1 particles and obtaining by the matrix (28)invensidccording to

the Frobenius formula [35], the seeking resolveatrix has2 X 2 block matrix

structure similar to (28) that we write as

R = RN +1(11) RN +1(12)
N+1 —

Ry +1(21) Ry +1(22) (31)

with blocks given by

15
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Riaay =Ryt RBHTCR,, Ry =-RBH™
Ruaey=~HTCR,, Runes =H™ (32)

Here the block matrix of principléel is defined byH =D -C R,B and has due to

Egs. (29) and (30) the right down corner block mdtrm

(AN +1/H|mN +1)
=0m= D, <nN +1‘g‘°)‘mj> mj’

mljrmnj

gO|mN+1)  (33)

n ">< " "

The inverse matrix ™ has similar right down corner block form . The nero

elements of block matrices (32) can be evaluatddliasvs
(1| Ry i) = (i [Ry | mi")
3 ([ Ryuagip MIN +ZY(MIN + IH[ N+ D (N + 4Ry i) )

(1| Ryzs1z| N +2)

= 3 (ni|Ry| ")

mrJ rmn

<nN +1‘ RN+1(21)‘ my ’>

folmed) (s gpr e 03

=2 <nN +1‘ ‘mN +1><mN +ﬂ9(0)‘ v > iR | mi > (36)
mm'j"
<nN +1~RN+1(22))‘mN +1> = <nN +1~H ‘1‘mN +l> (37)

Egs. (34)--(37) enables one to evaluate the blotkgsolvent matrix (31) in
the case oiN +1 particles, provided one knows the resolvent mdtixN particles.
That is a recursive procedure based on Frobeniasufa in matrix algebra.

16
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5. Self consistent currents excited inside couplgzhrticles in quasi-
separable approach

As was mentioned in Sec.3, Egs. (17) system iscbase to evaluate the
currents excited inside coupled particles, in themkework of quasi-separable

approach. Consider this notice in more details.

According to Egs. (6), (14) and (15) the self cetwsit current ) (7') excited

inside of ensemblg-th particle is defined by
j(j)(r) — J'd F'T (J)(—’ ') E© (") 38)
with the ensemble incident electric fielg® (F) giving in Eq. (2).The QS self

consistent T-scattering operator of ensemcki particlef(j) (F,1") is presented as

dyadic expansion (16) . Therefore denoting
30 = [drT () EQ () (39)
enables one to write
JOF) =3t (F-1)I D (40)
n

We get a physically transparent representatiortferself consistent current excited

inside of ensemblej th particle as expansion along vector basis fonsti with

expansion coefficients being equal to the quastiti@9). These expansion
coefficients satisfy the equations’ system
70) = 7() SO i\ 730
n =Jdan +ZZ <nl‘g ‘mJ >‘]m (41)
m j'#]
which is originated from Egs. (17) system. An inlog@neous term in the new

obtained equations’ system RHS is defined by

I = Jd -7 EQ() (42)

17
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and presents expansion coefficient along vectorsifasctions of current excited
inside singlej -th particle.

The matrix of obtained Egs. (41) system coincidéh wmatrix A, defined by
Eq. (20) and hence this system can be resolvedthdttnelp of the resolvent matrix
R, and recursive procedure of preceding section.hatsame time, the Egs. (41)

system is interesting itself in special cases @f timensional ordered arrays of

particles.

6. Quasi-separable T-scattering operator for elecomagnetic crystal unit
cell

In previous Secs.2-5 we considered T—scatteringabms in QS approach for
single particle as well as coupled particles’ ertdemarbitrarily placed without
overlapping in free space. The aim of this seasaim show that QS approach can be
used also at evaluating the homogenized electroeti@mgarystal structure effective
dielectric permittivity tensor (dyadic).

The way of QS application on this area is openethbyprincipal observation
that above effective dielectric permittivity dyad& simple expressed via crystal

structure unit cell T-scattering operator. The teratg potentialV(I') of crystal
structure has periodic property () =V (I +15) where I =S8 +5S,a, +S;8, is
lattice point, with 8,,8,,8, and S=(s,,S,,S;) being the primitive vectors and
generic multi-index of integers, respectively. Tiheident electric field Eo(r) IS
supposed after [1] to have the Floquet propersy, E°(F)exp(iki) = Eéf’;(r‘) is
periodic in the crystal, for example, constant geets we imply in the future. Under

this condition a solution to LS equation (1) foettotal electric fieldE(r) has

Floquet property also, becoming a Bloch (Floguetyvavfield with wave vectok
[39]. LS equation (1) for the Floquet electric fieis transformed [1, 40] to a

productive form

18
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E(F) =E,,(k, a))exp(lkr)+jd FVEEE) g

Here the RHS inhomogeneous term represents thagaepver crystal structure unit
cell Q Floquet electric field given by

E. (K@) = j E(F) exp(ikF) (44)

Q
with |Q| denoting the unit cell volume. In Eq.(43) RHS gl term one sees

integration over structure unit cell and an electield reduced lattice dyadic Green

function defined [1] as

G,o(F —F') s ‘ZG‘O)(k )exp[k (-7 )] (45)

JZ0

In this definition the multi-indexd components must not be all equal to zero

— —

simultaneously; the vectok, =k -k, where k® = j,b + j,b, + j;b, and b,

— —

b,, b, are reciprocal lattice primitive vectors; GP(k) =

(|_‘ kk/ koz) / (k§ - kz) denotes the spatial Fourier transform of the stect

field dyadic Green function (3) in free space. Bireraged electric field (44) satisfies

the Dyson equation
= o) = FO £ &0 () 1 (k +N\E (k
E(k,w)=E" +GOk,w)M (K, w)E (K, w) (46)
The dyadic mass operatof (k,w) is related to the effective dielectric permittyvit
dyadic £4 (k,a) via well known relation (see, e.g., [21]F (K, W)/ & =
T -M(K,w)/k2.

Return now to transformed LS Eq.(43) for Floquetc#ic field and write its

solution similar to Eq. (4) in a form
E(F) = E,,, (N + [dF [dF"Go(F - )T (7P E (M) 4
Q Q
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where we denoteém(r) = Eav(lZ,w) exp i lzrﬁ). The dyadicT (7',F") in the Eq.
(47) RHS has physical sense of the crystal straammit cell T-scattering operator.
Comparison Egs. (43) and (47) leads to LS integgaktion for unit cell T-scattering

operator

—||

(F,F) =V(F) |:5(F -7 +V(F)£J;dF”§po (r — F")'?(F", r) (48)

that is obtained also from LS integral equationf@)single particle in free space T-
scattering operator by formal replacing the eledtald dyadic Green function in free
space to electric field reduced lattice dyadic @Griemction.

Now we are ready to resolve the main problem «f ffsiction, concerning the
application of crystal structure unit cell T-scatig operator for structure effective

dielectric permittivity dyadic evaluation. The pleim is resolved with the aid of
identity for dyadic mass operat&zl(lz,a)) in a form

= . - 1 I
(k,w)E,, (k,w) :@Idf\/(r)E(r)exp(lkr) (49)
Q
This identity, being actually definition for struice effective dielectric permittivity
dyadic, jointly with Egs.(47) and (48) lead to dediresult

M (K, ) = ﬁ i dr i dr’ exp[i K(F - F’)]‘F (F, ") (50)

The got result shows that dyadic mass operatorbeamritten as double Fourier
transform over crystal structure unit cell from thait cell dyadic T-scattering
operator.

Side by side with the unit cell T-scattering operaatisfied the LS Eqgs. (48)
we introduce T-scattering operator of a virtual weil in free space satisfied LS Egs.

(5), solution to which we denofg © (r,r"). One can exclude scattering potential of

unit cell from LS Egs. (48) RHS, via replacinglitg T-scattering operator of unit cell
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in free space. After that one gets a LS equationcfgstal structure unit cell T-

scattering operator in transformed form

int

-?(l;»’ l;»r) — 'I?(O) (l:" I:»I) + I dF"JdF”'E (Fn _ F’")-?(F"’, F') (51)
Q Q

where Eim (r-r’)= épo (r-r’)- GO (r —1") denotes [1] electric field lattice

dyadic Green function interaction part defined #dfeiknce between electric field
reduced lattice dyadic Green function (45) andtatetield dyadic Green function in

free space (3). QS solution to transformed LS Egf5. we seek in a form
e — . -1 I\NF (7 = ¥+ =
T(r,r)—Z<nJ‘)( ‘mj>t(r—rj)Dt(r—rj,) (52)
njmj’
with inversion to an unknown generating matriX . Direct substituting
representations (24) faF © (r,r') and (52) into transformed LS Egs.(51) determines

the seeking generating matrix as difference of mvatrices

(nilxmi*) = (il ¥ |mi’) = (ni[gmi") 53)
first of which coincides with inversion to matrir IEgs. (22) LHS and second is
given by

(nilglmi") = [ dr [ dr E, (7 =1, )Gy (F =T, (7' = F;) (54)
Q Q

and describes coupling between particles of a calit via crystal structure. The
obtained exact expression (50) for mass operatéerms of unit cell T-scattering
operator and QS representation (52) for this wltTe-scattering operator enable one
to evaluate contribution effects of coupling betwemit cell particles into crystal
structure effective dielectric permittivity tensanithout relating a priory to Clausius-

Mossotti homogenization formula.
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7. Quasi-separable T-scattering operator applicatios

In this section we consider several applicationsQ8 technique for T-
scattering operator. Fist of all one should show hbis technique gives classical
Mie result on plane wave scattering by homogeneégalsctric sphere.

7.1. Plane wave scattering from and transmitting into sperical particle

Apply the QS T-scattering operator (13) to the aafseomogeneous spherical

particle of radiusly in free space. We choose a vector expansion furgtibasis
t, (F) in the form of infinite set of regular at the angspherical vector wave
functions [41,42,43] denoted in spherical coordisdt : 9, ¢ as Me(o)mn(k) and

Neoym (K) . In these denotations indicdg and O mean even and odd spherical
harmonics with respect to latitude angie respectively, and indiceBMN number

spherical harmonics with respect to azimuth anfleand ¢ again. ArgumentK

denotes wave number inside the spherical partikle,(«w/c)é"?. Introducing a

multi-index P =M gm(K) of Nggm(K) we write belowt, (F) or t,(r). Note that

these vector expansions’ functions satisfy thersmbial restriction in the last Eq.(6)
automatically due to definition of vector spherieave functions.

We need evaluating the generating matrix (10).Hi® énd one can previously
make a productive identical transformation of cowpimatrix (11), using differential
wave equations for electric field dyadic Green fiorc Eq. (3) in free space and for
spherical vector wave functions and applying theoter Green theorem [41]. The
described transformation of coupling matrix (11)rrpgs one to rewrite the
generating matrix (10) as follows

1
k2 —k>

X9 =- [ [d= v (e [p(r) <0 xE, (/) - T, () O’ x p(F)] (s5)
Q z

where a vectorp(f') =G @ (f' -F)f,(F). The out and inner integrations in the

rewritten generating matrix expression RHS are gquaréd along the spherical
22
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particle volumeQ and surfaces, respectively, withdr being volume element and
d='andv(f') being surface element and unit normal to surféa@ment.

The detailed integrations in the Eq. (55) RHS is aifficult in the main and

gives the diagonal generating maﬂﬁ( )(( )5pq after that the QS T-scattering

operator (13) takes a form

T(O)(a _ﬂ) Z (o) e(o)rm (k) D Ivl’é(o)mn (k)

Me(o)mn
N1/ (56)
o — (0) Ne(oym (K) 0 Ny (K)
mn /YNe(o)mn

where the primed spherical vector wave functiore ratated to primed spherical

coordinatesr G ¢ The elementsy{” of diagonal generating matrix (55) are

presented in terms of Mie scattering coefficientsl apecial bilinear(Ky,K) -
functionals of spherical vector wave functions qeyical particle volume ( see
Appendix A).

Let the incident on spherical particle electriddibas form [43] of transversal

plane wave

(o]

(0)(r - z [Moln(ko) _i Nem(ko)] (57)

n=1

with denoting E, =i E® (2n+1)/n(n+1). The electric field E,. () transmitted

inside spherical particle is evaluated with the @idyeneral Egs.(6) and expression
(56) for QS T- scattering operator of sphericaltipks. The evaluation result is as

follows

Ere(F) = 2, [ € Mo, (ko) =i d Ney (ko) | (58)
n=1

where transmitting coefficients, and d,, coincide with usual for Mie theory (see

Ref. 43, page 128). The electric field, (F) scattered by spherical particle is
23
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evaluated automatically with the aid of LS equatid) for total electric field,
provided one knows the electric field transmittegide the particle. The result is as

follows
Esc(r) - Z En |:_bn M oln(ko) + I an Neln(ko):l (59)
n=1
where scattering coefficien®, andb, coincide with usual for Mie theory (see Ref.

43, pages 129 and 130).

7.2. Pre-Haar basis of vector functions defined oparticle finite elements
Having applied the QS T-scattering operator (13)hfomogeneous spherical
particle in the preceding subsection, we chose cioveexpansion functions’ basis

t.(F) in the form of infinite set of spherical vector weafunctions defined over

whole particle volumeQ. Consider now another choosing for vector expamsio
functions’ basis consisting the functions definedfiaite elements of particle volume
in spirit of general finite element method [33].cBuchoosing may be useful in the
case of particle with complicate shape and lead®%oapproximation of particle
scattering potential operator when LS equationTikacattering operator is resolved

exactly.

Subdivide the particle volume into set of not overlapping subdomaifds ;

n=123--- so thatQ=JQ,and Q,(Q, =0 as n# m. Define the orthogonal

and normalized set of functions

= %; jdftn (Mt (F) = O (60)

where H(r JQ,) is a subdomairf2, characteristic function equal to unite as point

t,(F)

r belongs to the subdomain and equal to zero iftpwhbelong the subdomain. The

set of functions in Egs. (60), which can be useflrasstep on the way to construct
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the Haar bases [34], we conditionally call as peaHbasis. This basis creates the

piecewise constant functions defined on the partiolume as
f(F) = () = FQIHF 0Q,) 1)
n n

with f(Q,) denoting the functiorf (I') averaged over subdomai®d, according to

I N vy
f(Q,) —‘Q—M!drf(r) (62)
On set of functions (61) an analog of Dirac deltaetion has a form
D(F,F) = Zt (Nt (F);  [drD(r, ) f () = £(7) (63)

Turn now to LS integral Egs (5) for T-scattering eggtor. Its RHS

inhomogeneous term has a facM() O(F —=T") with particle scattering potential

V(F). We replace this factor approximately as

V() —F") =V (F)D(F,F') = ZV(Q ), (M, (F) =V(F,T) (64)

and obtain QS particle scalar scattering poteMidl, ") operator. Going to get QS
particle dyadic scattering potentlad (r,f") operator, we generalize the basis of

scalar functiond, (') in Egs. (60) to basis of vector functions
t,, (M) =t,(r)e, (65)

Here ép denotes a three—valued vector function of intéggex P = 1, 2, 3, equal

~

to unit vectorsX, Y, Z along thex =X, X, =Y, X =2z axes of the Cartesian
coordinate system, respectively. Using iden@ép [ ép =1 we find similarly with

p
Eqgs.(64) an approximation

V(F)S(F -F) =V (F)D(F,)] ZV(Q ), (F)OE, (F)=V(F.F)  (66)
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that is really QS particle dyadic scattering poair\z' (r,r") operator. The LS EQs.

(5) for T-scattering operator with QS scatteringgpdial operator (66) is resolved

exactly as follows
T =%, (nplyma)t, ()0t ) 7

with generating matrix

<”p\)( \mq>zrén)< pl1]may) <”p‘ (0)\mq> (68)

where the second matrix element in the RHS desgyiviave coupling between the

particle elements is defined as in Eq. (11), i.e.
nplg@|mg) = [d7[dF'E, (F)G O -)T,, (7
P9 Mg np mq (69)
The unit matrix<nj\| \mj’} is the same with one before Eq.(20).

There is a formal difference between the first eimthe RHS of Eqgs. (10)
and (68). In details the first term in the Eq. (R} S should seen in the case of basis

vector functions (65) as

.[d np )

The integral in the RHS of this equation tendsh® quantityl/V(Q,)in the RHS

> (70)

first term of EQ.(68) in the limit of infinitesimigd small subdomains of the particle
volume, i.e. wherQ,,| - 0 and mentioned formal difference is dissipated.

The vector expansions’ functions (65) satisfy withrresponding accuracy to
solenoidal restriction in the last Eq.(6) as iswehan Appendix B. It would be

interesting also to compare the pre-Haar basistitume in Eqs.(60) and (65) with
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position of the electric and magnetic field veatomponents about a cubic unit cell
of the Yee space lattice [44] in computational &tatynamics of the finite-difference

time-domain method [45]. But such comparison isadwdur paper aim.

7.3. Artificial double diamagnetic-paramagnetic narrow peak in
metamaterial with unit cell of coupled plasmonic péicles

In Ref.[21] the Dyson equation technique for avethgave electric field over
statistical ensemble of random discrete media wsesl Uo evaluate the medium
effective dielectric permittivity with spatial diepsion and then via Lindhard rule
[46] the corresponding effective magnetic permégbilln details, the effective
diamagnetic property was demonstrated in limit mfejpendent strongly reflected
nonmagnetic small spherical particles, which passgsindividual high dielectric
permittivity or conductivity. The physical base feffective magnetic permeability
appearance consisted in circular currents creatadd a single particle via magnetic

dipole scattering.

X

Figurel. A sketch to illustrate an unit cell in@& 8rystal structure XyZ is the
Cartesian coordinate system, , are primitive vectors) with two small coupled

plasmonic spherical particlegf, andr is a diameter and distance between particles,
respectively).
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Now we are going to apply the Dyson EQ.(46) for raged over
electromagnetic crystal structure unit cell wavectic field to evaluate the structure
effective dielectric permittivity and then via Liafd rule again the corresponding
effective magnetic permeability. In particular, weend to demonstrate a specific
parametric resonance effect as narrow in frequenayd double diamagnetic-
paramagnetic peak coursed by space-grope resoeéffiect [5,6] between unit cell
coupled small plasmonic spherical particles. Theysmal base for double
diamagnetic-paramagnetic peak appearance consisisrgular currents around
coupled particles (see Fig.1) via electric dipaattering by a single patrticle.

We start with generalized [1] on the anisotropisecthe Linhard rule for effective

magnetic permeability dyadig, (k,w) evaluation, which in our denotations and

geometry on Fig.1 has for the compongnt),, = 1, a form

1
M (k,@)-M, (k=0w)=| — -1|k2 (72)

,Uyy
The dyadic mass operator is given by exact forr(@d, with unit cell T-scattering
operator double Fourier transform being in the RIAS. our investigation has
shown, the space-grope resonance effect betweeralihcoupled small plasmonic
spherical particles can be considered in tight inmpdapproximation, when direct
wave coupling between init cell particles is subs#dly grater their coupling via
crystal structure. The unit cell T-scattering op@raatisfies the transformed LS Eq.

(51) and can be approximated in the tight bindingtlby the first term of this
equation RHS that is by T-scattering operator aff cell in free space TO (r,r").
But T-scattering operator of two coupled electripote scatterers is evaluated in
Ref. [6] and is written out, actually, as QS T-seang operator (24) for two

coupled particles, with inverse generating matimix aector expansion functions
being defined as
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(ni|x|mi) =&, aP'(s) +aP'(8) | &,(8.01,+7,.9,,)
+&,[bP'(5)+hP'(9) | &,0-4;)

(72)

and fnd (F) In Eq(A9) We denote heré}“ :1/[1_(ft'|)2] and bt,l = ft’lat,l-

The dyadicsP'(s)=1-sOsand P'(s)=sOs are, respectively, transversal and
longitudinal projectors on unit vectog=r/r along vectori connecting two

coupled particles inside unit cell. The quantitigs' =-47k2n Gi'(r) where
transversal and longitudinal componer@s(r) of the electric field dyadic Green

function (3) in free space are defined by the feifg identity and have the values
G(F) = Gy(r)P'(8) + Gy(r)P'(3) (73)

where

U OO | -
Go(r)—[hkor kgrzjs()(r), Gy (1) ( k0r+k§rzjeo<r)

The electric susceptibility/ of small spherical particle with radius and dielectric

permittivity & is given according Ref. [43] by =5 (&, — &) /(& +2).
Substituting the inverse generating matrix (72) aector expansion functions (A9)
into QS T-scattering operator (24) and the lasi fiotmula (50) for mass operator

results in

M (K , w) |Q| Z <nj‘ (0)- 1‘mj’>exp[iIZ(r”j =T )]én 0&, (74)

n,m=1 '=1

Substituting the obtained dyadic mass operator i#d)Linhard rule (71) gives the

expression for inverse effective magnetic perméglmbmponent evaluation
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t
1 —14 dm (k.1)?

My 10 1-(1)°

(75)

We apply this expression to study the space-grepenance effect on effective
magnetic permeability. According to Ref. [5,6], tlspace-grope resonance is
characterized by conditiom' - 1 that can give in general for resonance distant
between small spherical particles a value closeeasth smaller their diametexr,,
provided that unit cell dimensions being smaller wavelength in free space. In the
case of plasmonic particles, whose dielectric pgrnty & - -2, the resonance
distant between particles can be more their dianaatd in vicinity of space grope

resonance the expression (75) for effective magpetimeability is rewritten as

W -
U, =
YW - - 20 Aw (76)

We denote heréV, the plasmonic resonance frequency related togimdielectric

permittivity by identity € /&, =1-3w}/”. A quantity Ac measures a difference

between the plasmonic resonance frequency andca gpaup resonance frequency
and is defined according to

2
A_a):S]T‘Qr‘r_O(wp roj

w, Q ric

(77)

where|Q, | = 47rr® /3 is volume of a sphere with radius equal to distenetween two

particles in the unit cell. Fig.2 demonstrates tbgonance dependence (76) in the

form of diamagnetic-paramagnetic narrow peak né&emnponic resonance frequency.

The parameters values are taken close to onesfif48¢ I,/ A, = 1/100,f, /T =

1/10, Aw/! w, = 1/1000,Q,|/|Q| = 1/2.
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Figure 2. Calculated effective magnetic permegh(li6) versus the normalized

. : w :
frequency of electromagnetic wave near plasmorsgrrance frequency® (vertical
dotted line is given as a reference for eyes).ridtg inset presents dia- -

paramagnetic peak in more details. The left inkestrates the quantityer (see
Eq.(77)).

7.4. Simple low dimensional ordered periodic andrear arrays of
particles with coupling matrix of specific properties

As was noticed in Sec.5, the EQs.(41) system fdir g@nsistent currents
excited inside coupled particles can be peculiemigresting in special cases of low

dimensional ordered arrays of particles. Let ussi@r some such cases when the

transformed particles’ coupling matr(ﬁi\j‘@ (O)‘mj > gets property of stochastic matrix

or Jacobi’'s matrix for arrays in the form of peimg@olygon chain or a strait linear
chain, respectively.
7.4.1. Periodic arrays of particles with coupling ratrix of stochastic property

Note that inverse generating matrix (72) of two Brmaupling spherical particles
can be obtained from general formula (22) for iseegenerating matrix of coupling
arbitrarily particles ensemble if one takes the Isrmpherical particle single T-

scattering operator (13) in approximation (A9) ¢déatric dipole single scattering
31



JOURNAL OF RADIO ELECTRONICS , N4, 2013

when the generating matrix (10) of single partickeecomes unit one

<n‘)(1(o)‘m>:5nm. In this electrical dipole approximation Eqgs.(4&ystem for

expansion coefficientst(l’Z) along vector expansion functions (A9) of self

consistent longitudinal current3!? () excited inside two coupled small spherical
particles drawn on Fig.1 and considered now in $fece takes a form
J@ J(2) — 7). 71,2) — 1/2 o)+
‘]é) - pzz‘]z( )= ‘J((l))z' J((l)z)— (_47Tko%7) Ez( )(r1,2)
—h J0 4+ @ =@ (78)
pzz‘Jz + ‘]z _‘J(l)z

The longitudinal component,, = <4§(°)‘22> of transformed two small spherical

particles’ coupling matrix is given by

p, =—4nkin GOy =21: kr_o0 (79)

r3’
The matrix of obtained Egs.(78) system obeys aetgpf stochastic matrix

that is its both rows have the same sum of themehtsiL- p, = A,. Though the true

stochastic matrix [35] has positive elements, thentmned stochastic property of
Egs.(78) system matrix enables one to find its reigede, which we call

conditionally stochastic one

@D @y =
(Vz 1Vz ) - (111) (80)
As one can see, the found stochastic eigenmode ¢B@esponding to eigenvalue

A, describes the excited longitudinal currents irthbooupling small spherical
particles oriented in the same direction of propiagaThe matrix of Egs.(78) system
has also another eigenmode (overtone) correspondieggenvalueld, =1+ p,, and
getting a form

W, wP)y=@a,-1 (81)
and describing the excited longitudinal currentboith coupling small spherical

particles in the opposite directions of propagatiorhe both found eigenmodes (80)
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and (81) can be created at special choice of intielectric field. Resolving Eqs.(78)

system gives

LY J - Mz —
QP32)="220,1);38,=3% (82)

and

J(l) _ _
@z . —
(332 =20, -D; 38, = -3, (83)

2
Thus, the stochastic mode (80) and overtone (&ly@ated by incident electric field
excited currents of the same direction and oppabrections inside single particles,

respectively.

Consider some details in frequency dependencegeﬁealues/\l and A, for
stochastic and overtone eigenmodes supposing tvatl spherical particles to be
plasmonic ones. Substituting the electric suscaipyib; from Subs.7.3 into particles’
coupling matrix longitudinal component (79) leadddllowing formula for overtone

inverse eigenvalue
— (3
1 &-g (AW, 1
3

A & —af 20 (Aw), w,r (84)

p

and similar formula for stochastic mode inverseeri@lue that is obtained by
replacing(Aw), - —(Aw), in EQ.(84) RHS. Comparison shows that formula 84)

overtone inverse eigenvalue is different from thieriula (76) for effective magnetic
permeability only in definition of its plasmonics@ance(A«), width. Physically

such close connection between formulas (76) angirt¥ans that effective magnetic
permeability in metamaterial with unit cell of cdegh plasmonic particles is coursed
by circular currents around coupled particles, ass wnentioned above, that
corresponds to currents excited inside coupledigbest according EQq.(83).This

physical reason is illustrated on Fig.3.

33



JOURNAL OF RADIO ELECTRONICS , N4, 2013

Figure 3. lllustration to correspondence betweecu@r currents around two coupled
plasmonic particles and currents excited insidedtparticles according to Eq.(83), in

the cases of positivel,, > Oand negativel,, < O effective magnetic permeability
component. Dotted lines are given as a referenceyfes.

Returning to the start of this Subs. 7.4.1 we wotddognize that did not
consider a periodic array of particles yet, thouglving revealed an interesting
stochastic property of two particles’ coupling matrin order to generalize this
stochastic property on the case of a periodic aofagarticles one could study an
ensemble of small spherical particles placed ajmgllel cylindrical domains when
cylinders themselves centered at the cornersi ofided equilateral polygon as in
Fig.4. Nevertheless we prefer to consider here nsorpler model ofN coupled

parallel wire vibrator—dipoles turned to half waamadth.

7.4.1.1. N coupled parallel wire vibrator—dipolesuned to half wavelength

We consider an ensemble of coupled parallel thin wire vibrator-dipoles of

length 2N each tuned to half wavelength in free sp@6e=A /2, k, =27/ A and

centered at the corners of sided equilateral polygon (Fig.4). The polygonngla
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coincides with theXY plane and the wire vibrator-dipoles are orientedg the Z
axis of the Cartesian coordinate system.

24

Figure 4. Schematic showing of coupled parallebwitiameter2a) half wavelength
2h = A/ 2 vibrator-dipoles which are extended along #hexis of the Cartesian
coordinate systenrXYZ and whose centre positions in th¥ plane are defined by

radius vectorsﬁ, 1=1,2,3,...

QS T-scattering operator of single wire vibratgrade turned to half
wavelength is given according to [15, 48] by EB)(Iwith generating matrix and

vector expansion functions being defined approxahyads
(nx@|m) =388, T,() = 3,260 (2);

t(z):(‘%j w.(2), @ (2)=cos@z /) (85)

1

In these equationg,(z) describes harmonics of current distribution, aatiwith an

amplitude, along the single wire vibrator-dipoleiked by incident electric field and

Z,is evaluated via double integral

h _ A
Z! = jdz j dzy,(2) 2G ©(z- )24, (Z) (86)

-h  -h
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and related to single wire vibrator-dipole input pmdance [15] z, by
Z, = (i4rml/ c*)Z;. The formulas (85) are obtained in approximatidn “lig
logarithm” [In(k,a)|>>1, with a being the cylindrical vibrator radius. Substitgin
Egs. (85) into Eqgs. (18) and (19) results in

(nia®|mi") = 8,8,99 .

) (87)

= = 1 h h ) A: = =1 '\ & 1} = =1
91(2)(r1r ):_?szj dzy, (Z)ZG(O)(I‘D _rD’Z_Z)Z‘/ﬁ(Z)Eaﬁqu — I
150w

where index notes a projection on th&, Y plane. The dimensionless quantity
a,(b) was introduced in Ref. [15] as specific coupliagtbr of two vibrator-dipoles

with distantb between them (see Fig. 5).
1,0

0,81

S 0,6]

b / 2h, arb. un.

Figure 5. Calculated dependence (87) of the reditl(Bne) and imaginary (dashed
line) parts of the specific coupling facter,, of two half wavelengtt?h = A, /2
vibrator - dipoles versus normalized distatide2h between vibrator-dipoles.

As one sees from this figure the coupling facp, — —1 as b/2h - O that
agrees the EQ.(86) and EQ.(87) second. The moret esymptotics for coupling

factor at small distancd3/2h — O between vibrator-dipoles has a form
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_ . bk 1 WEy o, _ -
alZ.u_l_Iﬂ.EEOZ’ Kzl—D|(27T)_|S(2ﬂ) (88)

Here S(X)is the integral sine [49] and regular functi®i(x) relates to the integral
cosineci(x) and Euler constarf’ =0.5772 byDi(x) = Inx+C-Ci(x) .
With expression (87) for transformed particles’ glimg matrix the Eqgs.(41)

system for expansion coeﬁicienfsz(]*z) along vector expansion functions (85) of self

consistent longitudinal currentdz(lz) () excited inside two coupled parallel thin

wire vibrator-dipoles turned to half wavelengthdala form

h
7@ J(2) — J@ J@,2) — O)»
‘J§ : _a:LZ‘Jz( )= ‘]((1))2’ J((l)z )= _[ dzt (Z)Ez( )(rm,z’ z)
1@ 1) = 7(2) B (89)
_312"]2 + ‘]z = ‘J(l)z
being similar to Eqs.(78) system in the case of taopled small spherical particles.

The matrix of obtained Egs.(89) system obeys agitgmf stochastic matrix and has

two eigenmodes, stochastic of type (80) with eigdémy A, =1—a,, and overtone

of type (81) with eigenvalueﬂz =1+a,,. At creating these eigenmodes by special

choice of incident electric field, as in Egs.(82dg83), the amplitudes of stochastic

and overtone eigenmodesil/and 1/4,tend to finite limit and infinity, respectively,

as distance between two coupled parallel thin wilgator-dipoles becomes too

small

1 1 1 14 24h b

17 % " (90)

A2 A, m b
These limits means that at close spacing two coupkrallel thin wire vibrator-
dipoles the overtone eigenmode with opposite edciteirrents direction of
propagations is created more preferably comparesidichastic eigenmode with the
same excited currents directions of propagations.

Consider now three coupled parallel thin wire vibradipoles centered at the

corners of equilateral triangle (Fig.4). In thisseaEgs.(41) system for expansion
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2,3)

coefficients 32(]* along vector expansion functions (85) of self dstest

longitudinal currentsJZ(l2'3)(r” gxcited inside three coupled parallel thin wire

vibrator-dipoles, with accounting symmetry relasag, = a,3 = ag, takes a form
h
@ (2 Q) — J@ 7 1,2,3) — ()7
Ji) _a12‘Jz( )_aiz‘]z( )= J((l))z’ J ((1)2 )= j dzt (Z)Ez( )(rm,z,s Z)
-h

— 1@ 1) _ 163) = (2
alZJz + ‘]z alZ‘Jz _‘J(l)z (91)

J@ J(2 733) — 3
—a,Jy) —a )+ 37 =30
The matrix of this system obeys a property of shstic matrix and has two

eigenvalues), =1- 2a,, with stochastic eigenmode

v v vP)= 1,11 (92)
and degeneratedA, = A; =1+a;, with two linearly independent overtone
eigenmodes written for example as

WO wWPw)=@1,-1/2-1/2); ¢ 1/2,17 1/2 (93

The eigenmodes (92) and (93) can be created ab$phoice of incident electric

field. Resolving Egs.(91) system gives

PRRRR [ S
— Tz . — —
(I,32,3)= =2 WLD; 3§, =I5 = I8 (94)
1
and
sy s J& s 1.
(IP,32,3)==20,-1/2-1/2), 3§ =35 =-238,  (9)
2

The amplitudes of stochastic and overtone eigensdde and 1A,tend to finite

limit and infinity, respectively, as distances beem three coupled parallel thin wire

vibrator-dipoles become too small, withA, - 1/3 and 14, going to infinity as in

Eqg.(90). These limits means that at close spadingetcoupled parallel thin wire

vibrator-dipoles the overtone eigenmodes with hetdame excited currents direction
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of propagations are created more preferably comdptarestochastic eigenmode with

the same excited currents directions of propagatiomll three wire vibrator-dipoles.

7.4.2. Linear array of parallel wire vibrator—dipoles with coupling matrix
of Jacobi’s property
Consider again the ensemblentoupled parallel thin wire vibrator-dipoles of

length 2h each turned to half wavelength and centered nawgala strait line

coincided with theX axis and oriented along thé axis of the Cartesian coordinate
system (Fig.4). We are interesting in extinctioteraf currents’ exciting along wire

vibrator-dipoles when this exciting is transferednfi the first vibrator-dipole to one

with the numbem .

The Egs.(41) system for expansion coeﬁicieﬁﬁé) along vector expansion

functions (85) of self consistent longitudinal @mts J{!)(F ) excited inside linear

array of N coupled parallel thin wire vibrator-dipoles we angting in a form
. 7049 = 3()
i = 33 — _
Z;ANJ'J'JZ =Jwer Ay =9y (96)
J =

where a specific coupling factddjj of two vibrator-dipoles with numbergand
j'is defined by EQ.(87) again. Our task consists ualiating the expansion
coefficient 32('\‘) of current excited inside the vibrator-dipole wittumber N,
provided the incident electric field excites thereat inside the fist single vibrator-
dipole only:]v((ll))z z0andJjy), =0, j>1.

To simplify the problem we use a closest neighbot@raction aproach putting
ajj = 0 as li-i|>1 and making the matrix Aij'of Jacobi’'s property one

(Jacobi’s approximation). Under this simplificatiasur problem is resolved by

formula
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N-1

a 3 @

Jm
Z detAN Dz (97)

Determinant of matrixAy is evaluated with the aid of recurrent relation

detA, =detA, , —a’, detA, (98)

For rough estimations one can use an asymptotitigolto this recurrent relation in

the form

— 2 4
detA, =1-(N-Da;, +O(a;) (99)
The numerical evaluation results of current exgitimside vibrator-dipole with

number N relatively to exciting the first vibrator dipold ™ /J&, is depicted in

Fig.6.
1,0 0.5 4 2
= DA

; :l7| = 'Tﬁ'-lll‘IH .?:‘I A28 A o
o W N £ 00p [k ik il
£ I = ERVRE- .
8 ool HALA A A8 wsanee =-0.50] 1\
E e £-1.01)| °
= 05| | 1 = |
g | Z-1,5{|2

-1 Uz.f) (a) 0-‘1 (b)

15 10 15 20 25 30 1 5 10 15 20 25 30
Number of antenna Number of antenna

= 0,791 I\,
= 0,50]
S
o 0,254
g
= 0,00
.Eh b}
2-0,25{ 2\

0,50 % i

1 23 4567 8
Number of antenna

Fig.6. Relative currend" / J§), (Eqs.97) exciting inside! th vibrator
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dipole real (curve 1 with circulars) and imagin&yrve 2 with triangles)
parts dependence an atb/2h= 0.1 (panels (a) and (b)) and 0.5 (panel (c)).
Touch lines 1" and 2’ are obtained with the aicheymptotics (99).

According to these figures the current excitingtrensferred from the first
vibrator-dipole to one with the number along strait line of vibrator-dipoles with
substantial oscillation in dependence wnand experienced extinction &t=10 on
level 0.25, with normalized distance between neltator-dipoles beingd/2h =
0.1. The asymptotics (99) gives for curves on Kaglf not enough in accuracy
approximation yet. This accuracy is enough for earon Fig.6(c) where spacing
between next vibrator dipoles becomes bighé2h = 0.5 and current exciting is

transferred along strait line of vibrator-dipolesN = 3 only.

7.4.2.1. Standing and propagating waves of currertexciting along linear
array of vibrator-dipoles and particles at all

According to Fig.6 the currents’ exciting is tragrgfd from the first vibrator-
dipole to the N th one along strait line of vibrator-dipoles wigubstantial

oscillations in dependence an. The physical reason for these oscillations cissis
in specific property of Eqs.(96) system matrfky in Jacobi's approximation.
Namely, the middleN -2 rows of this matrix have sum of their elementsatda

1-2a,, whereas the first and\ -th rows have sum of their elements equal to

1-a,,. Because of that the first ard-th equations of system (96) play role of
specific boundary conditions for the rest midadle- 2 equations and solution to the
Egs.(96) system becomes similar to elastic strisgillations [36], being rather
standing wave of currents’ exciting along linearagr of vibrator-dipoles than
propagating wave. Nevertheless in the middle plaat long array the solution under
study is approximately a propagating wave. Nextgive analytic confirmation for
predicted physical feature of EQs.(96) system soiut
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Recurrent relation (98) for determinant of Egs.(8¢3tem matrix in Jacobi’s
approximation enables one to get solution to thistesn analytically, provided the
incident electric field excites the current instde fist single vibrator-dipole only
(see some details to solution in Appendix C)

J0 = (-1)"""2cos? =—
sin(N + 1)J 28,

(100)

The second Eq.(100) is dispersion equation foctmplex variabled =5 +i9". In

the middle part of a long linear array of vibrathpoles, whenN - 0 and vibrator

position numberj is fixed, Eg.(100) gives asymptotically
JP - -2cosd expibj k Y | k=— " (101)

where9">0 andk is a wave number. Having known the wave numbee, can
evaluate as usually [41] corresponding phase wglogj, and group velocityv,
putting
V :i) V:d_a) izl_wdvph
ph k g dk (102)

2
vV, VgV, dw

The frequency dependence of wave number is obtanyedolution of dispersion

Eq.(100). Being complicate in general, this dispersquation is simple resolved
analytically in physically interesting case bﬁz\ >1/2 and 8, =0 when wave

number takes a form

1 1 )
K —Earccoszz 1 9" =0 (103)
Apply the obtained form (103) for dispersion egoltto the limit of small

distances between linear array vibrator-dipoleseduno half wavelength when
according Eq.(88) the coupling factar approximates to minus one and wave phase

velocity in Eq.(102) due to Eq.(103) is given by
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Vv 3
_ph S —kb << 1
. nko (104)

(6]

wherec, denotes the light speed in free space. To evathatgroup velocity one
needs considering the case of weakly detuned waibdipoles, which length is lightly
different from half wavelength and vibrator-dipolgut impedance z, is defined

according to [48] via relations

%zl = Di (277) - | 2n|n(k:aj “’;}r“’R |
2 S (2m) _. T (105)

W 2rrin(L/k a)’ @Sy

As one can verify at resonance frequerdc¥ Gy the input impedance becomes pure

real and at tuned frequenay = &J; the input impedance value is consistent with

Eq.(88). Substituting now the weakly detuned vibratipole impedance (105) into
expression fora, in EQ.(88) and the last into EQ.(102) with accaumtEq.(103)

gives for group velocity at resonance frequencylae

v, 3 Di*(2n)

¢ 4 Iniika) (106)

The obtained value shows that group velocity ofremiis’ exciting propagation
between close packed resonance vibrator-dipolegegative in sign and small in
magnitude compared with light speed in vacuum.

Return to analytic solution (100) to Eq.(96) syst&wmaring in mind definition
(101) for wave number, this solution describes eatstanding wave of currents’
exciting along linear array of vibrator-dipoles haropagating wave, though

asymptotics (101) for the middle part of a longeén array of vibrator-dipoles when
N = o and ] is fixed describes propagating wave. Consider aolit for the
right end part of the long linear arraf = j - « corresponding to solution in

Eqg.(97). Asymptotics of analytic solution (100) the right end describes a standing
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wave, with exponentially decreasing amplitudeeas-N|9'|) in accordance to Fig.

6(c). Especially interesting from physical pointwéw to note a special case=0,
which realized for dispersion equation (103) and emwhabove amplitude
exponentially decreasing effect is canceled. Ia tlaise the asymptotics for expansion
coefficient (97) of current excited inside the atmr-dipole with numbeiN takes a
form

JM _ 2cosd [ exdfi #) exfiN 74+ ) expN -9 IS, (107)

This asymptotics substantially oscillates in degem@ onN as was noticed on the
Fig.6.

8. Conclusion

In this work, we have presented obtained for th& fime analytic solution to
fundamental in electromagnetic wave multiple scaite theory Lippmann-
Schwinger (LS) integral equation for T-scatteringerator of electric wave field by
dielectric and conducting nonmagnetic particle dbiteary size and shape. The
solution is derived with the aid of a chosen ve@gpansion functions’ basis and
written as sum of separable scattering operatorghted by inverse of a generating
matrix and named quasi—separable (QS) T-scattepegator. The QS solution to LS
equation is generalized for ensemble of coupletigbes in free space as well as for
coupled particles inside unit cell of electromagnetystal. An equations’ system for
self consistent currents excited inside coupletiggas was derived also in QS form.

In the case of a single spherical particle we haardied that vector expansion
functions’ basis chosen as vector spherical wavections the QS T-scattering
operator gives the Mie solution for incident tragi®e plane wave scattered from
particle and transmitted inside particle. The eletmef diagonal generating matrix
are presented for this case in terms of Mie scagjaoefficients and special bilinear
functionals of spherical vector wave functions ghegical particle volume. We

considered also a principally another choosing ¥leetor expansion functions’

44



JOURNAL OF RADIO ELECTRONICS , N4, 2013

defined on finite elements of particle volume ammed conditionally pre-Haar
basis. It was shown that such “basis”, even indgdinite number of expansions’
functions, leads to QS simplified scattering patdrdperator and automatically to a
corresponding exact solution to LS equation, wheaids to solution of LS equation
with actual, not simplified scattering potentialeogtor when number expansions’
function of pre-Haar basis becomes infinite.

Mentioned above equations’ system for self consistarrents excited inside
coupled particles can be resolved in general catbetine aid of recursive procedure,
which is appeared at a particle attachment in tspirinvariant imbedding method.
But for some interesting special cases this systemesolved via simple methods
analytically. On this way were considered such phsna as artificial double
diamagnetic-paramagnetic narrow peak in metaméatesth unit cell of coupled
plasmonic particles; creation for eigenmodes wertones in periodic arrays of
particles with coupling matrix of stochastic pragetextinction rate for transfer of
currents’ exciting in linear array of particles witcoupling matrix of Jacobi’s

property and standing and propagation wave phenomfem such transfer.

APENDIX A. Diagonal generating matrix (55) in termsof Mie scattering

coefficients and bilinear (K,,K) -functional of spherical vector wave functions

Let us denoteglk,.k) a bilinear functional of spherical vector wave dtions

on spherical particle volume defined by
[Me(o)rm(ko)' Ivie(o)mn (k):l
= _[ dr ( M e(o)mn (ko) M e(o)mn (k))
Q

1
=K
™ k(K — k?)

(A1)

X[ ket (KT ) (Kro) = kg (kr (K g )]

and similarly
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[ Iqe(O)mn (ko)’ Ne(o)rm (k)J
= [ 67 (Nogoym () Nog (K))

(A2)

BTt LA CSTACRRUVACSACR)

Here an auxiliary matrix is used

B n(n+1) (n+m)!
=21+ 9,,) 2n+1 (n—m)! (A3)

andy, (p) is Riccati-Bessel function (see [43], page 129k Dasic result of this

Appendix A consists in the following formulas faagonal generating matrix (55)
elements

ik, _ Kb,
0) T 2’
/Y e(o)rm |:M e(o)mn (ko)’ M e(o)mn (k):|
ko _ Ko (A%)

X(O) — _ 2
Ne(o)mn |: I\Ie(o)mn (ko)’ |\le(o)mn (k):|
There are also simple relations between Mie saatfemd transmission coefficients

_|k0k0 —K°

[ eon (Ko)s Mo, (k)]

C_ 1n
Ay koK
g K

(AS)
[ e(O)ln(ko) Ne(o):ln (k)]

n 1n

that can help to understand the derivation of B§3.4nd(59) with the aid of QS T-
scattering operator (56).

In electric and magnetic dipole approximation th® ©-scattering operator
(56) becomes equal to a sum

—]|

(F,F) OT & (F,F') +T ™ (F,F') (26)
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where the RHS first “electric” and second “magrietesms are created by Eq.(56)
second and first terms, respectively, taken in @dpration N =1, M =0, 1. For

the case of small spherical partidg, <<1, kr, <<1 we find
Te(r,r) O-4mk2n 6o )T,

T™9 (7 1y O 4 (Ox)0 (@ X)SF)SE)T (A7)

with 77 = (3 /2k3)a, and & = (3 /2k3)b, being the spherical particle electric and
magnetic susceptibilities, respectively.
In the first formula (A7) for QS T-scattering electdipole approximation a
Dirac delta-function is appeared, actually, as eggion

H(F O Q)

O
o(r) ‘Q‘ A

and similarly when argument is replaced ta’, in accordance with Dirac delta-
function analog definition in Eqgs.(63) by consiagrifunctions defined on particle
finite elements. Formulas (A7) were obtained in[t&f via the Hertz's vector of
electric dipole and magnetic dipole scattering gt@he can rewrite the electric and
magnetic dipole approximations (A7) for T-scattgroperator in QS form (13) as
Te = iff [ Ot F); T™ = it*nmag ) Ot ()
n=1

n=1

(A9)
£, (1) = (-4mkg 7)) €,0(7); 1™ (1) = (~47)"* O < &, o(F)

where unit vectorg, are defined in subsection 7.2. Note that electipold vector

expansion functior,” (F) in Eq.(A9) with analog Dirac delta-function (A8)tisdies

automatically the solenoidal restriction in thetl&s|.(6) for points laying strictly
inside spherical particle domain. With accountingings on spherical particle
surface or in the case of true Dirac delta-functtbe selenoidal restriction on
electric dipole vector expansion function is vedfiwith the aid of generalized
function theory (see next Appendix B). Magneticalgovector expansion function

in Eq.(A9) satisfies the solenoidal restrictioncaunéatically.
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APENDIX B. Solenoidal restriction on finite elemei vector expansions’
functions (65)

Let us verify that vector expansions’ functions)(6&fined on finite elements
of particle volume satisfy with corresponding a@ayrto solenoidal restriction in the
last Eq. (6) in weak sense of theory of generalizadttions [51]. For points lying
strictly inside particle volume domain the solerabicestriction is satisfied exactly.

Take divergence of a vector function (65) and irdégy this differential operation

with product by a test smooth functiéii") of compact support. We obtain

[ oF () O, () = jdr a4”(r)t (F)

p

(B1)

We suppose for simplicity that all subdomaifdg have form of cubes with their
edges being parallel to the axes of the Cartes@rdmate system. Denoting
#(x,;Q,n) the test function averaged over cube 2D secfign perpendicular to

x, axis one can transform

N e e 1 a a
J‘drqr)[lt np(r):_ |Qn|g|:ﬂxnp+E;anD)_ﬂxnp_§;anD)i| (BZ)
where X,,is subdomain centre coordinate a® denotes the cube edge length,

with |Q,|=a. In the limit of @ - 0 Eq.(B2) RHS tends to zero as

8% 9 (X Q).

APENDIX C. Analytic solution to Egs.(96) system in Jacobis’
approximation

Turn to recurrent relation (98) for Eqgs.(96) systematrix determinant. One
can directly verify the following solution to thiscurrent relation
sin(N +1)J

et = oW (cosd) " sing (C1)
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Solution in Eq.(100) to Eqs.(96) system is writtert first as

detA ., ~
J(l)
detA, 07 (C2)

that is verified directly again. Transformation sblution (C2) to the form in
Eq.(100) is performed using Eq.(C1).

:j-z(j) =(-1 J'ﬂ(_alz) =
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