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EIKONAL DISTRIBUTIONS IN TWO-MIRROR IMAGING SYSTEMS
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Abstract. Three terms of the eikonal distribution expansiotine aperture of a symmetric
two-mirror imaging system in powers of a sourcaskeerse displacement from one of the
foci have been obtained. The terms of the exparemierexpressed through the mapping
function and its derivative. The accuracy of thaws formula has been checked for the
aplanatic two-mirror system.
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AHHoTanus. [TosydeHbl Tpy 4iieHa Pa3IOKEHUS pacnpeaesieHus SMKOHala B anepType
OCCCUMMCTPHUYHOTI'O ABYX3CPKAJIbHOI'O 00BEKTHUBA 110 CTEIICHIM IOIICPCYHOI0 CMCIUICHU S
ucTouYHMKa n3 (pokyca. UineHsl pa3nokeHus: BhIpaXEHBI Yepe3 (QYHKIIMIO OTOOpaKeHUS
BOJIHOBBIX ()POHTOB M €€ MPOU3BOJIHYI0. TOYHOCTH MOTYyYeHHOU (POpMYIIBI TIPOBEPEHA
JUTA ATUTAHATUYECKOM JIBYX3€PKaJIbHOU CUCTEMBL.

KiawueBble ci10Ba: reoMeTpruecKas ONTHKA, CUCTEMBI 3epKaJjl, abeppalu dHKoHaa.

Symmetric two-mirror systems have found wide agplans in constructing of optical
instruments. One can use the classical theoryyodlbarrations based on an expansion in
powers of an image displacements in analyzing autidnezing mirror systems [1]. This
technique is very efficient in analyzing paraxeys, but it needs taking into account high
order aberrations for wide angle systems. An eikaligtribution in a mirror system
aperture has a compact form and gives more infoomé&ar analysis of the image quality.
For example, we can use this distribution in anatydiffraction effects. The eikonal
distribution can be obtained by a ray-tracing téghe, but it needs a large amount of
calculations. Another way is to use a series ofexfaant aberrations [2], but complicated
formulas are required to analyze and optimize wadgle systems. We can use the
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well-known formula for the two terms of the eikonigdtribution expansion in powers of a
source displacement from the focus [3]. Howevearattcuracy falls down sharply if the
displacement increases. In addition, the formuksdwt describe the eikonal aberrations
in aplanatic systems.

A formula that describes the first three terms loé texpansion of the eikonal
distribution in the aperture of a symmetric two-irtelescopic system in powers of the
source transverse displacement from the focus veswed in [4]. A formula that
describes the first three terms of the expansidheoéikonal distribution in the aperture of
a symmetric two-mirror telescopic system in powsrghe source arbitrary displacement
from the focus was derived in [5].

In this paper we derive the formula that describedirst three terms of the expansion
of the eikonal distribution in the aperture of ansyetric two-mirror imaging system in
powers of the source transverse displacement firerobthe foci.

Let us consider two types of symmetric two-mirrgstems with the point source
displaced from the first focus O along the aXisf the Cartesian system of coordinates
(see Figs. 1, 2). The first of them is the Cassegige and the second one is the
Gregorian type.

If the source is located at the first focus O, gpkerical front is formed in the primary
mirror aperture with a center in the second fd€ulset us suppose that for any pofin
the aperture with coordinatec@sp, rsing , z,) there is the only ray outgoing from the
source at an angteto the system axis Z and going through the poiahA the poinE at
an angledto the axis Z. The angldés 6, a are shown in Figs.1,2. So, there is a one-to-one
correspondence between the an@lend the point A, and between the angland the

anglea described by a mapping function

6=6(a) (1)
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Fig. 1. A system of the first type:
(a)a projection in XZ plandp)- a projection in XY plane
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Fig. 2. A system of the second type:
(a)-a projection in XZ plandgp)- a projection in XY plane

w



XYPHAN PAOVUOINEKTPOHUKW, N3, 2013

Let the pointO, be the position of the transversally displaceda®along the axis X. We

suppose that the one-to-one correspondence betpsgture points and rays emerging
from O, is retained if the source is displaced to p@intin this case, there is the only ray

connecting the displaced source and the phirithe eikonal along this ray is equal to

the sum of three lengths:
=|AB|+|BR| +|ROy| 2)
For the convenience of the subsequent manipulaksdns choose th€YZcoordinate

system with the center in the focal point O andpbiat A on the axisX with the

coordinatesX,, 0,Z,). The other points have the following coordinaf#ss, 0, Zy),
B,(Xg + AX, AY, Z,+ AZ), P(x,, 0,z,), P,(X, + AX, Ay, z, + A2), O,(—dcosp, ésing, 0), and
O(0, 0, 0) whereZ; =f(Xg), Z> = w(xp), Z =f(X) andz = y(X) are equations for the
generatrices of the primary and secondary mirespectively.
We can present the expression (2) for the eikasal
= [sz +AY? +(Zg — Zp +0Z)?
+(Xg = xXp + AX =) 2 + (AY — )2 + (Zg - 20 +AZ - 182)%]"" + (3)

+|(xp + Ax+ Go0sg)? + (By - Ssing)? + (zp +02)2] "
Let us expandZ andAz in powers ofAx, Ay, AX andAY

f'(Xg) f"(Xg)
2X g 2

AZ = £'(Xg)AX + AY? + AX? + .. (4)

AZ =" (Xp)AX + ==

U0e) e 000 ©
2

p

The valuesAx, Ay, AX and AY are unknowns. Having replacé&¥ and Az in the
expression (3) with the expansions (4) and (5)ifgggxpanded the expression (3) for the
eikonal in a power series AK, AY, Ax, andAy up to the terms of the third order and using
the Fermat principle, one can obtain the systefmeér equations for the unknown
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AY, Ax andAy
O g O og L og g (6)
0AX 0AY 0AX oAy

Having found the valuesX, AY, Ax andAy from the system (6), having substituted them
into Eq. (3) and retaining the terms of the finstl ahe second power 6f we obtain

2 L
L(r.9) = Lo + Scospsina + 2| 05 L co@ g SN 8| o
2 L L,
d t
L, =p+ + ’ A
1=P 1+Cp; (1+Cp)(1+Cpg) 8)
d t
L, =p+ + ’ o
2= P 1+Cp, (1+Cpy)(L+Cpg)) (9)
CBl:_ZLBet’ Cr1 = ZKZ)[ t +djf (10)
coS— cos?\1+Cp
2 2
2f'(xB)co§;J
Coz2 =" ' 2 t (11)
XB\/1+[f (Xg)]
w'(xp)co%‘ t
CP2 = ] 2 [1+C )’ (12)
XP\/l"'[w (Xp)] B2

whereL,=p+d+t, o=|0OF , d=[BF, t=|AB ; (r,0)- polar coordinates of the poiAt (5,
7e¢)- polar coordinates of the poi@ in the rotated Cartesian coordinate syst&gand
K, are the curvatures of the mirrors at the pabhésdP; 0 andw are the angles between

incident and reflected rays at these points, resy.
Considering the ray geometry, we can express thaulas (10)—(12) through the

mapping functiord (a) and its derivative:
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2Kp 1 (Rde j 2Kg 1( daj
= -p—-d|, =—|d+R-p—|, (13)
cos’? PA\ da co&’g Rd de
2 2
Zw’(XP)CO# 1(_sin@
2 :_[R__ -p-dj, (14)
o A s
6
2f'(Xg)cos— :
S 2 !t (d+R—PSI_ﬂ], (15)
Xg\L+[f (xa) R sin

whereR=|FB . Using (13)—(15), we can reduce (8), (9) to

2
izi(ﬁﬂdaj_ t (d”), (16)
L, pU Rdd) RR-t)ldo
. . 2
i:l(ﬁg&'naj_ t sin“a (17)
L, o Rsind) R(R-t)sin?8

where the upper and lower signs in (16), (17) ré&dethe two-mirror systems 1 and 2,
respectively,t=R—(Z—2,)/cosb, , Z- is the coordinate of the poikt d=g+dy+R—0- R;
Po, do, Ry are the values @b, d, R on the axis Zp can be expressed througtirom the
equation of the secondary mirror generatex o (o), o. can be expressed througlirom
(1), Ralso can be expressed throuinom the equation of the primary mirror generatrix
R= R(8), @ =arctanf/(Z—Z2,)]. So,R, 6, a, p andt are expressed throughn formulas
(16,17), and the formula (7) depends on the mapfpingtion & @), its derivative and the
shape of the mirror generatrices. Using the resititsined in [5], the shape of the mirror
generatrices can be expressed through the mappicgidn too.

Returning to the originaXYZcoordinate system (see Figs. 1, 2), where thetpQin
and A have polar coordinateg ¢ and (, @), respectively, it is easy to show that the
expression (7) is valid.

If a two-mirror system contains only second-ordefeaces,
6



XYPHAN PAOVUOINEKTPOHUKW, N3, 2013

da _sina

P bl 18
dé sin@ (18)
andL, = L,. Therefore, the formula (7) is simplified:
52
L(r,®) = L, +5cos¢sina+z(1—co§ @sin? a) , (19)

2

wherelL, is given by the formula (17).

If F > oo, the formulas (7) and (19) turn to the correspogdines obtained in [4, 5].

The accuracy of the derived formula (7) has beatkdd for the aplanatic two-mirror
system of the first type as an example. The systamthe following parameters: the
primary and secondary mirror aperture diameter®arel andDs = 0. 5643, the angular
apertures are N = 3.33333 and n = 0.88604, respéctihe distance between the mirrors
do= 0.66666, the distance between the first focus@®the secondary mirror j%=0.5,
the distance between the primary mirror and thersgfocus F i$,=3.33333. The value
of transverse displacemedt0.1. The mirrors generatrices are determined byditas

given in [6]:
a b
1 _1+k, 1-k (1 1 )1rm (y—(l—m)] (y-(m-l)] y
pla) 2kd, 2kd, Po  kdy y 2m 2

( k+1 |<—1)2‘a‘b
X y— ,
2m+2 2

1 =1+k+1_kam0+ﬁ£~ 1]FAA(IN—G—M)yYﬂ—UW-DjBX
R() 2kd, 2kd, R, kdy \ u 2M 2

( k+1 k—1j2'A'B
x - 1

2M +2,U 2
where sina =msind , y=cosa +(m? -sina)¥? |, u=cosd+(M?-sin®> )2 |
k= (R, + pp)/dg, A=MK/(MK-1), B=M/(M —k), a=mk/(mk-1), b=ny(m-k),
M=0.30006,m=1/M .
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Fig. 3. The dependence of the formula (7) error upon coates.

The differenceAL between the eikonal distributions in the apertcaéculated from
formula (7) and through the exact ray-tracing dalibon for the source transverse
displacemend = 0.1 along the axis X is shown on Fig.3 by culv@or the distribution
along X axis) and by curve 2 (for the distributialong Y axis). One can see that the
maximum error of the formula (7) is 4 X10

It should be noted that the formula (7) might bedusot only for calculations. Also, it
can be useful for analytical optimizing a two-mirnmaging system.

The technique developed in this paper might be tsetitain the third and next terms
of the eikonal distribution expansion in powersha source transverse displacement.

Also, it is possible to obtain an eikonal distribatformula for a multiple mirror system.
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